
GOSONAR: Detecting Logical Vulnerabilities in Memory Safe Language Using
Inductive Constraint Reasoning

Md Sakib Anwar
The Ohio State University

anwar.40@osu.edu

Carter Yagemann
The Ohio State University

yagemann.1@osu.edu

Zhiqiang Lin
The Ohio State University

zlin@cse.ohio-state.edu

Abstract—As the global community advocates for the adoption
of memory-safe programming languages, a significant research
gap persists in identifying the critical vulnerabilities that follow.
Logical vulnerabilities represent the most formidable threat to
these programs, in the absence of memory safety related vul-
nerabilities such as buffer overflow. Go, a prevalent memory-
safe language for cloud-based applications where resource
availability is paramount, is especially susceptible to nonter-
minating, resource-exhaustive vulnerabilities. We present a
novel approach to the problem, inductive constraint reasoning,
designed to evaluate nontermination in complex, real-world
programs, demonstrating superior performance compared to
contemporary tools on a standardized dataset. Our methodol-
ogy employs binary-level underconstrained symbolic execution
to gather the constraints necessary for multiple recursive itera-
tions. By applying a first-order derivative to these constraints,
we model and classify various recursive functions, determining
whether their subgoals converge to a global objective. This
study addresses numerous challenges in the analysis of Go
programs while simultaneously developing and implementing
a practical solution to detect uncontrolled recursion, which
has revealed 5 new vulnerabilities in the Go standard library.

1. Introduction

In a recent report [2] issued by the US White House
Office of National Cyber Directory (ONCD), the integration
of memory-safe programming languages has been identified
as a key element in the formulation of the National Cyber-
security Strategy. This strategic decision is underpinned by
the revelation that 70% [3] of all Common Vulnerabilities
and Exposures (CVEs) are attributable to memory safety
issues. Despite concerted efforts of both industrial entities
and academic institutions to develop frameworks [1], [4],
[18] that aid in the detection and mitigation of such vul-
nerabilities, eradication of these issues cannot be achieved
without adopting such languages [2]. Furthermore, tradi-
tional justifications for selecting conventional programming
languages, such as execution speed [14], [15], size of com-
piled binaries [23], and the ability to compile into native exe-
cutables [24]—are increasingly being challenged by modern
memory-safe languages like Go and Rust given the growing
availability of resources.

Nevertheless, there is a noticeable lack of research
focused on program analysis to detect vulnerabilities in
memory-safe languages. An in-depth review of Go related
CVEs shows that logical vulnerabilities are the most com-
mon. Considering Go’s extensive use in the backend of
cloud-based platforms [10] such as Uber, DropBox, Meta,
and Netflix, logical vulnerabilities that can impact availabil-
ity represent a major risk. OWASP ranks unrestricted re-
source consumption 4th among the top 10 threats to API se-
curity in 2023 [16]. Interestingly, among the leading CWEs
for Go are Uncontrolled Resource Consumption (CWE-
400), Allocation of Resources Without Limit (CWE-770)
and Uncontrolled Recursion (CWE-674), which represent 79
(35%) of the CVEs. Specifically, logical vulnerabilities that
can be exploited to deplete resources can lead to financial
losses through denial-of-service attacks. Furthermore, we
identified six instances of uncontrolled recursion in Go’s
standard library, with five of them having a Common
Vulnerability Scoring System (CVSS) rating of 7.5 in 2022
alone. These vulnerabilities in the standard library make any
Go-based application vulnerable to resource exhaustion.

Unlike traditional DoS/DDoS, logical vulnerabilities
weaponized to cause denial of service via resource exhaus-
tion do not require multiple requests and thus can avoid
detection by traditional methods. The difficulty in verifying
these vulnerabilities adds to the complexity, especially when
dealing with uncontrolled recursion. Identifying the start
of an uncontrolled recursion and demonstrating the lack
of a clear termination condition, particularly when it spans
multiple functions, are some of the challenges faced. More-
over, unlike traditional languages, Go incorporates various
compilation designs that make analysis of Go programs
using traditional program analysis difficult. Although loops,
including infinite loops, present similar challenges, they do
not engage additional computational or memory resources,
thereby rendering them less susceptible to exploitation com-
pared to recursive constructs.

Existing Approaches. A considerable body of research
has been devoted to the detection of nontermination in
relatively straightforward programs. These programs are typ-
ically integer-based and resemble C-like syntax. Researchers
have utilized methodologies such as program analysis, the-
orem resolution, and the construction of test oracles for

runtime assessment. Regrettably, recent investigation [21]
has demonstrated these methodologies to be ineffectual be-
yond their own dataset, when applied to real-world applica-
tions, even those developed in lower-level languages such as
C/C++. Furthermore, it also identifies pointer manipulation,
array, data structure and recursion as key failure points for
these tools [21]. Interestingly, programs built with contem-
porary memory safe languages employ all of these heavily
in order to be efficient and secure which makes these tools
inadequate for analysis.

Nontermination work divides into termination and non-
termination detection. Proteus [25] summarizes loops, while
UAutomizer [12] translates traces into automata for termina-
tion analysis. A data-driven approach [28] uses ML to learn
loop limits. Nontermination detection, such as TNT [11],
generates counterexamples from recurrent states. Another
work [7] reverses transition systems in nondeterministic
integer programs. Loopster [26] and its continuation [27]
reduces nontermination to a reachability problem and use
path dependency automata. Practical solutions like 2LS [19]
use interprocedural abstract interpretation for C programs,
and AProVE [8] employs constraint solving for recurrent
sets in loops. One work [29] addresses infinite loops in
real-world programs, finding C/C++ vulnerabilities with 240
hours of fuzzing. However, none efficiently handle complex
real-world programs, let alone Go programs.

Our Proposal. Drawing from initial observations and the
gap in existing approaches, we introduce an innovative,
efficient and practical framework designed to identify un-
controlled recursion in real-world Go programs, GOSONAR.
Just as sonar technology is used to measure the depth of the
sea, GOSONAR can detect the depth of recursions detecting
uncontrolled recursion vulnerabilities. Our method utilizes
binary-level underconstrained symbolic execution to collect
constraints necessary for several recursive iterations. We em-
ploy a first order derivative of these constraints to model and
classify different kinds of recursive functions. Specifically,
we analyze the change of constraints from n−1th recursion
to nth recursion i.e. the new set of constraints each recursion
adds. This analysis helps identify the trajectory of program
execution along with the recursion’s subgoal and determines
whether this subgoal converges to a global goal or not. A
termination condition will be part of this delta and can not be
met indefinitely leading the recursion closer to a termination
state.

Unlike previous studies that applied constraint solving to
generate a repetitive set of program states leading to infinite
recursion, our approach adopts an inductive strategy focus-
ing on constraint changes. Although inductive reasoning has
been used to simplify constraint solving following inductive
logic programming, we use it to predict the trajectory of
program execution. This approach allows for the assessment
of complex recursions in real-world programs, where the
route to a recursion may be intricate, yet the recursion itself
can be straightforward. By eliminating the need to analyze
all the constraints and focusing on their differences, our
approach effectively narrows the scope of the decision-

making process. We address several challenges while
designing our prototype, GOSONAR, related to symbolic
execution of binaries compiled from a heavily instrumented
language, enriching the process of detection of potential
candidates and finally systematic exploration of different
kinds of recursive function and their effect on constraints.

Evaluation & Result. We used GOSONAR to analyze all 36
packages in the core Go standard library used by every Go
program in some form. GOSONAR identifies 14 packages
with reachable recursions and examines these packages to
detect 983 recursions, forming 20,036 lassos composed of
the recursion and a stem. GOSONAR uncovered 5 new
vulnerabilities in the Go standard library, all reported and
acknowledged by developers1. In order to test the sound-
ness of GOSONAR, we have evaluated GOSONAR on a
dataset [21] of infinite recursion vulnerabilities in OSS
programs. This dataset contains both vulnerable (nonter-
minating) and patched (terminating) versions of each bug
and provides a taxonomy of such vulnerabilities based on
the root cause. Furthermore, due to the lack of tools that
can work with Go programs, we compared GOSONAR
against leading technologies for native language, namely
UAutomizer [12], CPAchecker [5], 2LS [19], AProVE [8],
and T2 [6] on the same data set. These applications set the
standard in termination analysis, with GOSONAR exceeding
their performance.

Contribution. The contribution of this work can be sum-
marized as the following:

• We present GOSONAR, the first and only tool of
its kind that can find real uncontrolled recursion
vulnerabilities in Go programs.

• We analyze all the standard libraries and find 5 new
uncontrolled recursion vulnerabilities.

• We propose a novel approach, inductive constraint
reasoning for evaluating nontermination in complex
real world programs that outperforms all contempo-
rary tools on a standardized dataset.

2. Overview

This section provides a formal definition of recursions
and their essential role in contemporary programming. Then
illustrates an example with an incomplete patch to empha-
size the importance of automated detection and the limita-
tion of manual analysis. Lastly, it addresses the difficulties in
developing a detection tool and the presumptions considered
during the design of GOSONAR.

2.1. Background

A recursion in a program is typically modeled as a lasso
consisting of a stem and the recursion. The stem provides a
path connecting the recursion back to the entry point of the

1. We have followed Go’s disclosure guideline for reporting vulnerability
and got acknowledgment from Go developers

func (dec *Decoder) decIgnoreOpFor(wireId typeId,
 inProgress map[typeId]*decOp) *decOp {
func (dec *Decoder) decIgnoreOpFor(wireId typeId,
 inProgress map[typeId]*decOp, depth int) *decOp {
 if depth > maxIgnoreNestingDepth {
 error_(errors.New("invalid nesting depth"))
 }
 ...
 wire := dec.wireType[wireId]
 switch {
 case wire == nil:
 errorf("bad data: undefined type %s",

wireId.string())
 case wire.ArrayT != nil:
 elemId := wire.ArrayT.Elem
 elemOp := dec.decIgnoreOpFor(elemId,
 inProgress)
 elemOp := dec.decIgnoreOpFor(elemId,
 inProgress, depth+1)
 ...
 case wire.StructT != nil:
 enginePtr, err :=
 dec.getIgnoreEnginePtr(wireId)
 ...
}

1

1

2
3
4

5
6
7
8

9
10
11

11

12
13

14

Figure 1: [encoding/gob/decode.go]
Patch for uncontrolled recursion in CVE-2022-30635

program, creating a complete path to invoke the recursion.
Recursion serves as a fundamental component within the
domain of functional programming, particularly in scenarios
where a given problem can be decomposed into analogous,
smaller sub-problems, progressively advancing towards a
comprehensive solution through their resolution. Parsing
nested data structures is one of the primary applications of
recursion, especially when dealing with nested input data.
However, while it is theoretically feasible to transform a
recursive algorithm into an iterative one, such a conversion
requires the introduction of an auxiliary function to call the
target function repeatedly. The mere inclusion of a depth pa-
rameter for the termination condition evaluation often proves
inadequate for larger-scale projects, as we will illustrate
in our motivating example. Specifically, the example will
highlight a prevalent instance of recursion within the Go
standard library, focusing on the inadvertent occurrence of
uncontrolled recursion and highlighting the deficiencies in
how developers currently attempt to patch such issues.

2.2. Motivating Example

CVE-2022-30635 is an uncontrolled recursion in the
Go encoding/gob package from versions 1.17.12 to
1.18.4. Package gob handles binary values (gobs) exchanged
between an Encoder and a Decoder, commonly used for
transporting RPC arguments and results. An attacker could
trigger a program panic via stack exhaustion with deeply
nested structures. Reported in June 2022 and marked re-
solved a month later, GOSONAR finds that the vulnerability
persists in the latest Go version due to an incomplete patch
which was later assigned CVE-2024-34156 [9]. The issue
is in decIgnoreOpFor, as shown in Figure 1 with red
for vulnerable and green for patched version. The function

calls itself on line 11 if wire is Array. For nested arrays,
elemId in line 10 will be the same as wireId at line 1,
preventing termination. The patch adds a depth argument,
incremented at the recursive call on line 11, with a check
at line 2 to terminate the recursion if depth exceeds
maxIgnoreNestingDepth.

Unfortunately, while this patch fixes one path that trig-
gers the bug, it misses another larger recursion that is
still uncontrolled. As shown in Figure 1, a call to the
function getIgnoreEnginePtr is present in line 13
when the variable wire is a structure. This function in
turn calls the function compileIgnoreSingle, which
subsequently calls the function decIgnoreOpFor, creat-
ing a recursive loop. Figure 2 illustrates this path using a
red arrow. The patch does not properly control this larger
recursion because the depth variable on which it is based
is reset to 0 each time the program enters the function
getIgnoreEnginePtr, undermining the check added at
line 2. Specifically, the patch addresses the recursion for a
nested array; however, it misses a larger recursion occurring
for a nested data structure. This motivates the need for a
novel solution that can allow developers to systematically
find these trickier uncontrolled recursion vulnerabilities.
Manual analysis and existing techniques are insufficient.

2.3. Challenges

There are several obstacles in uncovering recursions and
verifying whether there is a path that can make them un-
controlled using contemporary tools. Additionally, analyzing
binaries for compiled memory-safe languages such as Go
introduces further obstacles due to their esoteric design and
compiler optimizations. We had to overcome all of these
challenges to build GOSONAR:

Recursion Detection. The first step in detecting uncon-
trolled recursions is to identify all recursions in the program.
Although this is straightforward for older languages like
C/C++, it is more complex for modern languages due to
the use of advanced data structures, instrumentation, and
interfaces. For example, consider the function call on line
11 from the motivating example (Figure 1). The function is
a method for Decoder, as seen in the prototype on line
1. At the binary level, such calls become indirect calls.
Debug symbols help, but not for interface calls resolved
at runtime. The same applies to calls on member objects
initialized during object creation. Moreover, Go’s inter-
faces can be anything, even without functions (interface
{}), and are not explicitly declared like in languages with
implements. These nuances complicate finding recur-
sions or function calls.

Reachability Detection. Reachability determination is cru-
cial for developers who overlook non-exploitable bugs. Un-
controlled recursion in a private function (not accessible to
outside actors) may have termination enforced by a stem
starting from a publicly accessible point. Most functions
require data structure initialization before calling the tar-
get function. Accurate analysis needs proper initialization,

Decode decodeIgnoredValue getIgnoreEnginePtr compileIgnoreSingle decIgnoreOpFordecode decodeValue

depth = 0

depth+=1
Stem Recursion

Figure 2: Lasso in motivating example highlighting the larger missed recursion in patch for CVE-2022-30635

knowledge of the code, and use cases, which current tech-
niques cannot automate. For instance, in Figure 1, the recur-
sive function decIgnoreOpFor of structure Decoder is
private. We find that the public function Decode initializes
the data structure. Finding reachability paths in Go is hard
due to frequent indirect calls. The main approach, dynamic
exploration or fuzzing, is time-consuming and doesn’t scale.
Fuzzing frameworks cannot generate the necessary objects
to trigger logical vulnerabilities. Lastly, even if backtracing
is possible, deciding when to stop is tough, as invoked
functions might be private and unreachable by an attacker.

Proving Uncontrolled Recursion. Once a recursion is dis-
covered and verified to be reachable, the challenge is to
determine whether it can enter an uncontrolled state that
constitutes a vulnerability. For example, a recursion may
loop 10,000 times but still manage to always terminate, or
there may exist a path that consumes so many resources
that only 100 iterations are needed to exceed the machine’s
limits. In either case, naive verification based solely on the
depth of the recursion is ineffective and imprecise. Con-
temporary tools have tried to subvert this by incorporating
some form of dynamic analysis to generate cases or by
converting the lasso into automaton by formally proving
the termination. However, both approaches prove unrealistic
for a modern program where the termination condition can
be extrapolated from pointer resolution, function calls, and
instructions that use complicated nested data structures. In
contrast, pure static analysis on a function level may detect
depth > maxIgnoreNestingDepth as a terminating
condition in our motivating example; however, it may not
consider all possible paths to reach the function or overap-
proximate possible values for the various variables.

Analyzing Go Executable. Lastly, unlike other languages,
Go lacks a static ABI or call convention, instead opting
to use an optimized convention that changes per function.
The passing of arguments varies according to the prototype.
For example, some are passed via the stack, and others
are passed using registers. The ordering is not fixed like
in C/C++ programs. For data structures, complexity dictates
whether fields are flattened into primitive types. Moreover,
as a memory-safe language, Go inserts extensive checking
routines for memory management and garbage collection
during compilation, complicating binary analysis. Conse-
quently, resource-intensive analysis techniques, such as sym-
bolic execution, face an increased risk of path and state
explosion. These factors hinder the application of typical
program analysis techniques to Go programs.

2.4. Scope

In addition to the technical challenges described pre-
viously, we also have the goal of designing GOSONAR
to be useful to Go developers and security analysts. The
Go community already has a robust method for tracking
security issues in which any reported vulnerability is quickly
assessed, tested, fixed, and made public with an appropriate
CVE advisory. Moreover, Go already has several static
analysis tools, such as GoSec [20], GoKart [17], and Static-
check [13], which use source code level checking to detect
common vulnerabilities. However, they fail to detect the vul-
nerabilities targeted by GOSONAR due to their lack of appli-
cability and context. Furthermore, like most languages used
for development, Go has a large repository of third-party
packages that make development efficient and streamlined.
The current system for enrolling a new package includes a
step that vets for vulnerabilities. Our vision with GOSONAR
is that it can be incorporated into the pipeline for publishing
new packages to vet logical vulnerabilities that are currently
undetected. Although we focus on resource exhaustion that
results from uncontrolled recursion in this work, we expect
that in the future, GOSONAR can be extended to model a
wide range of logical vulnerability classes.

2.5. Assumptions

GOSONAR is a binary analysis tool and can detect and
prove uncontrolled recursions with symbolic execution in
Go executables. We assume that the binary contains debug
symbols to facilitate binary analysis. Moreover, since we
expect the user of GOSONAR, such as the package vetting
pipeline described previously, to have access to the target
source code, we allow an optional component of our analysis
to take advantage of the source code. We further discuss the
effect of source code in our analysis in our evaluation and
ablation study. We assume that the program can be compiled
into a native executable using the flag --static-libgo,
resulting in a monolithic standalone executable that is easier
to analyze.

For our threat model, we assume that the attacker has
the ability to interact with the target program via the public
functions of the packages, and no additional check is done
to sanitize the input to these functions other than what is
already in place. We also assume that the attacker can use
any other packages to facilitate the creation of the payload.
For example, the payload may be crafted using packages
such as reflect and unsafe if desired. Given the posi-
tive response of Go developers during the disclosure of the
findings of GOSONAR, our threat model appears reasonable.

Lastly, we define a resource exhaustion vulnerability as
one that can continue increasing the usage of resources

without any warning or error condition. We define an uncon-
trolled recursion as one that can continue to loop indefinitely
until the program crashes or gets stuck.

3. Design

This section explores our understanding and its role in
addressing the challenges in §2.3. Our key insight for suc-
cessful under-constrained symbolic execution is that public
functions in a Go program are easily identifiable and often
initialize subsequent private functions containing recursion.
However, symbolic execution sometimes needs guidance
and help in analyzing constraints for verifying uncontrolled
recursion.

GOSONAR consists of four key components: the first
component, as explained in §3.1, identifies all potential
candidates for uncontrolled recursion within a Go program.
Once these candidates are identified, their reachability is
validated by the second component (§3.2). Subsequently, the
reachable recursions or lassos are symbolically executed to
gather constraints using the third component (§3.3). Lastly,
these constraints are employed to demonstrate that the recur-
sions are uncontrolled, as discussed in the fourth component
(§3.4). Below, we provide an overview of these four main
components of GOSONAR:

3.1. Candidate Finder

GOSONAR generates all possible candidates for uncon-
trolled recursion by identifying all recursions not only in
the program but also in the library. As mentioned earlier
scaling to the level of a modern program with thousands of
library functions is a difficult task. GOSONAR approaches
this problem with a modularized solution, where we realize
that state-of-the-art graph algorithms can be used to find
circuits in the Control Flow Graph (CFG). However, loops
or circuits in the CFG may denote both loops and recursions.
In order to find only recursion, GOSONAR needs to evaluate
the Callgraph instead of the CFG.

Callgraph Generation. GOSONAR uses static analysis to
analyze the executable binary and build a callgraph for the
program. To transform the CFG to a call graph, all the
nodes representing basic blocks of a function can be merged
together, making one node for each function. Furthermore,
only the edges generated from a CALL in the binary can be
used to transform the CFG to a much smaller callgraph.
However, we find even after this downsizing, the graph
remains considerably big with thousands of functions and
edges. Upon investigation, we find many of these functions
are stub functions which are generated during compilation
as a placeholder. Furthermore, the runtime library, which is
responsible for managing the runtime environment such as
memory management and thread management, adds a lot
of function calls. After pruning the graph with these rules
GOSONAR can reduce the size enough for efficient circuit
detection in the graph.

Candidates

Backtracer

Shortest
Path Finder

Lassos

Call
Resolver

Path
Guidance

Symbolic
Execution

Success

Constraint
Analyzer

Ranking
Function

Uncontrolled
Recursions

Potential
Threats

Go
Executable

CFG
Callgraph

Pruned
CallgraphRecursions

Failed

Filter

Figure 3: Overall design of GOSONAR
¶ Candidate Finder (§3.1) · Reachability Verifier (§3.2)

¸ Symbolic Execution Guide (§3.3) ¹ Constraint
Reasoning (§3.4)

The entire process can be seen in Figure 3 – ¶ where
the native Go executable is used to generate a CFG that
can contain multiple nodes for each function represented
as different colored nodes. Upon merging these nodes and
edges, GOSONAR generates the callgraph, which is further
pruned to only keep functions of interest. The generated
recursions contain both self-loops and recursions spanning
multiple functions.

3.2. Reachability Verifier

After detecting all recursions, their reachability and ex-
ploitability by an attacker must be verified. In Go, naming
conventions determine the scope of functions or data struc-
tures instead of keywords such as private or public.
Names starting with a capital letter are public, while others
are private. Public function-induced recursions can be easily
triggered by attackers. For recursions involving only private
functions, a public function can still make them reachable.
An attacker can build an input to a public function to reach a
targeted private function. GOSONAR verifies the reachability
of candidates in two steps:

Backtracing for Public Functions. The callgraph can be
used to find all callers for a given node, however, given the
complexity of symbolic execution if the stem is too large it
might cause a problem in finishing the symbolic execution.
Thus GOSONAR runs a depth first backtracing for each

func Unmarshal(data []byte, v interface{}) error {

 return NewDecoder(bytes.NewReader(data)).Decode(v)

}

func (d *Decoder) Decode(v interface{}) error {

 return d.DecodeElement(v, nil)

}

func (d *Decoder) DecodeElement(v interface{},

 start *StartElement) error {

 val := reflect.ValueOf(v)

 ...

 return d.unmarshal(val.Elem(), start)

}

func (d *Decoder) unmarshal(val reflect.Value,

 start *StartElement) error {

 ...

 switch v := val; v.Kind() {

 ...

 case reflect.Slice:

 if err := d.unmarshal(v.Index(n), start);

 ...

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Figure 4: [encoding/xml/read.go]
Public functions leading to victim private function

unmarshal for CVE-2022-30633

function in the candidate recursion. This helps GOSONAR
limit the length of the stem. While backtracing whenever
a public function is found, it is added as a potential entry
point for the underconstrained symbolic execution. However,
we notice that, although counter intuitive, longer stems
sometimes produce better results given the initialization
undertaken by each function. Thus, GOSONAR does not stop
upon encountering a public function; rather, the stopping
condition is entirely based on the predefined depth limit
that can be configured easily.

Consider CVE-2022-30633 an uncontrolled recursion
in the encoding/xml package that spans multiple private
functions including unmarshal. The recursion is un-
controlled when the input variable val is a slice as
can be seen on line 20 of Figure 4. There are multiple
public functions leading to the function unmarshal as
shown in Figure 4, namely Decode, DecodeElement
and Unmarshal. The closest public function to the target
function, unmarshal is DecodeElement which calls
on line 12. However, it can be noticed that this function
also provides the least amount of context for the target
function, leading to more constraint solving for symbolic
execution. For example, this function does not initiate the
value of the variable start whose value in turn decides
whether the function Token will be called on line 18 or not.
Whereas the function Decode sets the value of start to
nil by default on line 6. Similarly, the structure Decoder
uses a reader interface in many parts of the function
unmarshal. Many structures implement this interface;
however, the function Unmarshal initializes the reader to
be byteReader on line 2, thus reducing the execution tree
by concretizing the reader type.

Shortest Path Finder. The order in which all the paths
from a public to a private function is discovered in a depth
first search is uncertain. Thus, to confirm that the shortest
path from a public function is analyzed, GOSONAR uses
the callgraph to find the shortest path between the two
functions. That is, from our example for the recursion in
unmarshal, GOSONAR needs to find the shortest path
between Unmarshal and unmarshal. This is an optional
and configurable optimization step that helps the symbolic
execution to be more efficient. All of this process can be
seen in Figure 3 – · where the candidates are passed to
the backtracer, which in turn uses the shortest path finder
component to find all possible lassos. We see that not
all recursions from the last step end up generating lassos,
whereas depending on each function of a recursion there
can be multiple lassos with varying length of stem. This
ensures that GOSONAR covers all possible ways to reach a
recursion and consider the constraints necessary that might
lead to a recursion becoming uncontrolled.

3.3. Symbolic Execution Guide

The goal of symbolic execution is to gather the con-
straints while executing the program from a publicly acces-
sible function to the recursion and subsequently executing
the recursion multiple times. All the inputs to the entry
point of the stem (i.e. the public function) that an attacker
can interact with are unconstrained for an underconstrained
symbolic execution. However, a symbolic execution will
evidently face resource exhaustion while trying to detect
other potential cases. To this end, all the lassos created in
the last step go through a filter that decides eligibility based
on the number of functions in the recursion and the stem.
This filter is configurable and can be changed according to
the need for our purpose.

However, the filter alone is not enough and thus the
execution needs to be guided to avoid state and memory
explosion. That is, upon each step, a priority has to be made
for all the successor states such that the execution can find
the recursion efficiently and comprehensively. Moreover, the
symbolic execution can get stuck if it is unable to resolve
indirect function calls such as interface function calls, which
are resolved at runtime. GOSONAR employs two tactics to
address these challenges:

Guiding to Prioritize Recursive Path. In order to limit
the states explored and the memory used, GOSONAR uses
a DFS approach which can be guided by the path found
in CFG. The CFG contains the path from the entry point
of stem to the recursion itself and subsequently the path to
execute the recursion as well i.e. the address of the basic
blocks that needs to be visited in order to reach a certain
target. This information can be used to create the priority
among the successors of a state. Furthermore, GOSONAR
also limits the number of state being executed by limiting
to one successor approach where only one state is explored
at a time. This stops GOSONAR from getting into state and
memory explosion as well. If GOSONAR fails to find a path

func (z *Reader) readHeader()(hdr Header, err error)
{
 ...
 if z.decompressor == nil {
 z.decompressor = flate.NewReader(z.r)
 }
 ...
}

func (z *Reader) Read(p []byte) (n int, err error) {
 ...
 n, z.err = z.decompressor.Read(p)
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 5: [compress/gzip/gunzip.go]
Public function containing unresolvable calls in Read for

CVE-2022-30631

func Write(w io.Writer, order ByteOrder,
 data interface{}) error {
 ...
 case *int16:

order.PutUint16(bs, uint16(*v))
 ...
 v := reflect.Indirect(reflect.ValueOf(data))
 ...
 _, err := w.Write(buf)
 return err
}

1

2
3
4
5
6
7
8
9

10

Figure 6: [encoding/binary.go]
Example of different types of function calls in Go

using the current state, another state is taken out of the stash
until the stash is empty or the target is reached.

Indirect Call Resolver. A correct stem can help initialize
the data structure, but often a sequence of disjoint function
calls is needed. For example, in Figure 4, Unmarshal
creates a byteReader and uses it to create a Decoder via
NewDecoder. However, such a function may not always
be available. In line 12 of Figure 5, a call is made to Read
of the member decompressor. Here decompressor is
an interface of type io.ReadCloser, which implements
Read and Close. A concrete object for this interface is
only assigned at line 5 under the function readHeader.
Thus, to resolve the call in line 12 in the public function
Read, a different private function must be called first.

GOSONAR addresses this by using the source code to de-
fine a function’s signature and search for matching functions
in the binary. It first uses the function call’s address to fetch
the source code line number, possible with debug symbols.
The source line is then parsed into AST to analyze the func-
tion call. GOSONAR examines various Go AST expressions
such as SelectorExpr (dot operation) and StarExpr
(pointer operation) to determine the static type of a function
call. The analysis aims to identify four pieces of information
for a call instruction: the package name, the interface or data
structure, and the function name. GOSONAR must handle
several cases to extract this information:

• Interface Method Call A function call can be made
to an interface method that is resolved during run-
time. This interface can be a member variable of
a data structure that is assigned during the initial-
ization of an object as seen in line 4 of Figure 5
where the variable decompressor can be any
data structure that implements all the methods for
io.ReadCloser. Moreover, it can be passed as
a parameter to the function as shown on line 1 of
Figure 6 where the variable w is of type interface
io.Writer. Thus in this case, if GOSONAR wants
to resolve the function call on line 8 of Figure 6
it has to find the type of w for package name and
interface name, whereas the function name can be
parsed from the line directly.

• Object Method Call A data structure may contain
multiple references to other data structures (as mem-
ber variables) and make calls to public methods on
them. For example, on line 4 of Figure 6 the object
order of type ByteOrder is used to call the
function PutUint16. GOSONAR analyzes the type
of the variable order statically to find the package
and data structure, and the function name can be
transcribed from the line itself.

• Package Method Call A package can have public
functions that can be thought of as static functions
in the OOP paradigm, which mostly work on the
passed argument. An example of such a function
call can be seen on line 6 of Figure 6 where the
functions ValueOf and Indirect of the pack-
age reflect have been called. For such a call,
GOSONAR only parses the package name and the
function name.

• Chained Call Often multiple calls can be made
on a single line of code, leading to multiple call
instructions on the same line of code. For example,
on line 6 we can see that both functions Indirect
and ValueOf have been called and, although they
will have different instruction addresses, they point
to the same line of code. GOSONAR handles this
by employing a LIFO queue for function calls. We
observe that the innermost function of a function
chain is called first on a binary level. Thus, upon
first resolve request on a chain, resolves all the
function calls and creates a queue. Upon subsequent
calls, the rest of the functions are popped until the
queue is empty. In our example, this will return
reflect.ValueOf first and then on subsequent
calls will return reflect.Indirect.

The overall design of the call resolver is shown in
Figure 7 where addr2line is used on the address provided
by the Go executable which provides the line number of the
source code. The source code is then parsed with AST parser
to extract the AST related to the call instruction. Finally, this
AST is analyzed to extract the four components.

Matching Function Signature. Once the function name
is resolved in terms of package, interface, data structure,

Go
Executable

AST
Parser

Source
Codeaddr2line

Call Type
Analyzer

Package Interface
Data

Structure
Function

Name

Address

Call
Code

#Line

Call
AST

Figure 7: Overall Design for Indirect Call Resolver for Go
using Source Code AST Parsing

and function name, GOSONAR must identify the match-
ing functions at the binary level. In the compiled ver-
sion, all these details form the function name, such as
encoding..z2fbinary.Size, where encoding is
the package, binary is the sub-package, and Size is
the function name. Ideally, each signature matches a single
function, which is true for package public functions and
data structure member methods, but not for interfaces. Using
symbolic execution, it can resolve a call target to multiple
addresses with constraints. For example, the io.Writer
interface in line 1 of Figure 6 has a single function Write.
Any structure implementing Write implements the in-
terface, such as bufio.Writer, bytes.Writer, and
archive/tar.Writer. Any of these can replace vari-
able w in line 1. In such cases, GOSONAR matches only the
function name at the binary level, finding all the examples
and leading symbolic execution to explore all paths.

This approach explores all data structures that implement
this interface and finds all execution trees. If recursion is
uncontrolled with a specific implementation, GOSONAR can
help infer the data structure needed to trigger the vulnerabil-
ity. This is shown in Figure 3 – ¸, where symbolic execution
is guided by the call resolver and path guidance, producing
success and failure cases for the next step.

3.4. Constraint Reasoning

If symbolic execution reaches a specific program point,
all collected constraints can be solved to find at least one
solution. States with unsolvable or conflicting constraints
are discarded. Should recursion be possible n times sym-
bolically, at least one concrete input exists to achieve this.
However, the primary challenge lies in determining whether
the n+1th recursion is feasible after n successful recursions.
A terminating condition must function as a constraint on
the program state that evolves with each recursion, guiding
the execution towards termination. The distinction between
the constraints at n − 1th and nth recursion demonstrates
the execution trajectory and the additional constraints im-
posed. The constraint analyzer reviews this difference to
detect varying constraints that could serve as a termination
condition. The lack of such a constraint indicates the uncon-
trolled nature of the targeted recursion. For failed scenarios,

GOSONAR organizes them by the execution stage and the
reason for failure.

Constraint Analyzer. The difference between the con-
straints of consecutive calls is the set added since the last
recursion. For example, take our motivating example in
Figure 2 where the depth serves as a terminating condi-
tion when the patch works. The following equation shows
the intended set of constraints on depth after visiting the
function decIgnoreOpFor for three times.

depth == 0 &&

depth < maxIgnoreNestingDepth &&

depth+ 1 < maxIgnoreNestingDepth &&

(depth+ 1) + 1 < maxIgnoreNestingDepth

The first time the function is visited, the initial value of
depth is 0 adding the first constraint. However, upon each re-
visit, an additional constraint is added on top of the previous
constraints. The new constraint added for each iteration can
be modeled as depth+n ∗ 1 < maxIgnoreNestingDepth
where there is a fixed value of n until this constraint can be
satisfied. This can be visualized with the help of a function
f(xi) where x is a variable of the recursive function and
f(xi) is the set of constraints collected on x after the ith

visit to the function. Now there are four cases that can
happen, which are explained as follows:

(a) Linear. There can be a steady increase in the set of
constraints as seen for depth in the fixed recursion.
This is true for all monotonic stepping functions
which constitute most of the recursive functions in
modern programs. In such a case, if the delta of con-
straint is satisfiable indefinitely, then the recursion is
uncontrolled, otherwise controlled.

(b) Constant. No new constraints need to be satis-
fied to continue the recursion. In our motivat-
ing example, for the missed recursion, the only
fixed constraint is depth == 0 && depth <
maxIgnoreNestingDepth. That is, when the
larger recursion is executed, depth is reset to 0,
resetting all constraints and making delta empty.
These recursions are uncontrolled.

(c) Logarithmic. Constraints can change logarithmi-
cally, a rare case in real-world programs, and
cannot be formally verified to terminate. For ex-
ample, if depth increases by 1/i with each
ith recursion, the increment may never reach
maxIgnoreNestingDepth. Such a recursion is
controlled if the termination condition is below the
convergence point; otherwise it is uncontrolled.

(d) Oscillatory. The last type is an oscillating function,
where constraints fluctuate with recursion and
cannot be formally verified to terminate. For
example, if one function in a recursion increases
depth, while another resets it.

func sizeof(t reflect.Type) int {
 switch t.Kind() {
 case reflect.Array:
 if s := sizeof(t.Elem()); s >= 0 {
 return s * t.Len()
 }
 ...
}

1
2
3
4
5
6
7
8

Figure 8: [encoding/binary.go]
Example of an unknown uncontrolled recursion detected

with GOSONAR

GOSONAR focuses on the first two kinds of function
that are more common in practise, as evident from Table 2
which shows the taxonomy of recursive functions in OSS
and their constraint reasoning type. GOSONAR gathers the
delta f(x2)−f(x1) and f(x3)−f(x2) from 3 recursive ex-
ecutions, canonocalizes the memory addresses, and matches
the constraints in these deltas. If the deltas can be matched,
then it falls under category a i.e. the slope is constant.
The delta is then analyzed for indefinite satisfiability to
detect uncontrolled recursion. For category b, if there are
3 recursions with same set of constraint then the delta will
be empty, which can be satisfied indefinitely by definition.

An example of category a for new vulnerability
detected by GOSONAR can be seen in Figure 8 where the
only requirement for recursion to be uncontrolled is that
t.Kind() must be Array for every nested element of t.
Under the hood, the function t.Kind accesses a private
integer variable kind that is matched to the constant integer
value of reflect.Array.kind. On a binary level, the
constraint becomes t.kind == reflect.Array.kind where
the only change on each recursion is the address of the
object t. We can prove this constraint to be uncontrolled
by canonicalizing the memory addresses, which makes the
constraint indefinitely satisfiable.

Ranking Function. There are several steps of analysis by
GOSONAR that a lasso must go through before it can be
identified as an uncontrolled recursion. GOSONAR ranks the
lassos that do not make it to the end depending on how far it
executes. For example, the constraint reasoning may fail for
a lasso if it is not in category a or b. On the other hand, there
can be lassos that finish executing the stem but never finish a
single recursion that have less chance of being uncontrolled.
That is, GOSONAR may miss some cases, which is true
for any analysis for the detection of uncontrolled recursion.
Thus, GOSONAR categorizes failed cases into the following
categories:

• No Paths. The underconstrained symbolic execu-
tion exhausted all possible paths before meeting the
termination condition which is hitting the recursive
functions for at least 3 times for 2 deltas required
for constraint reasoning.

• Timeout. These lassos could not be analyzed within
the timeout limit of 600 seconds.

• Recursion Verified. For these lassos the recursions
were executed but the constraint could not be ana-
lyzed to be uncontrolled.

• Symbex Errored. For these lassos the symbolic
execution threw an error and could not be completed.

GOSONAR uses a central database and maintains a status
for each lasso such that they can be later anlayzed by
developers.

4. Evaluation

We evaluated GOSONAR on standard library packages
of Go that are used by all Go programs in some way. The
binaries are compiled by statically linking libgo to facilitate
analysis of the package. Furthermore, GOSONAR focuses
on a particular package by isolating the functions under that
particular package. For verification of the found recursions,
we have manually scrutinized them and created Proof of
Concepts (PoCs) for them. These PoCs were then used
to verify the uncontrolled recursion and subsequently the
resource exhausting properties. In evaluating GOSONAR, we
try to answer the following research questions:
RQ1 How many recursions can GOSONAR detect and

what are the effects of each component of
GOSONAR on it?

RQ2 What are the new vulnerabilities GOSONAR found
and how many of them are exploitable?

RQ3 How accurate is GOSONAR and how does it perform
on previously known CVEs?

RQ4 How does GOSONAR perform compared to state-of-
the-art on a standard dataset?

4.1. Experiment Environment

We have implemented GOSONAR by extending angr
version 9.2.91 with our custom call resolver and exploration
technique with Python version 3.12. GOSONAR uses graph-
tool version 2.59 for graph-based algorithms such as circuit
detection and shortest path detection. We have analyzed
36 standard library packages from Go version 1.14.6. For
building the binaries, we have built gcc 11.4.0 with gccgo
from scratch with debug symbols. We have used Docker
version 24.0.5 and Ubuntu:22.04 as the base for our docker
containers to build and execute the PoC to verify the result
found by GOSONAR and to observe the resource exhausting
power of the PoCs. The experiments were carried out on
a single 10-Core 12th Gen Intel Core i7-12700 machine
with 128GB memory and running Linux 5.15.0-84-generic
x86 64. We have limited our analysis to lassos with at most
five functions in loop or stem in total ten functions at most
and analyzed each lasso for 600 seconds before labeling
them as timeout, whereas the contemporary tools were given
900 seconds before labeling them as timeout.

4.2. Dataset

We focus on the logical vulnerabilities prevalent in
Go. Table 1 lists the top 10 CWEs for Go with count

CWE Count ↓ Description

CWE-22 41 Path Traversal
CWE-20 36 Improper Input Validation
CWE-400 35 Uncontrolled Resource Consumption
CWE-770 32 Allocation of Resources Without Limits or Throttling
CWE-532 16 Insertion of Sensitive Information into Log File
CWE-79 13 Cross-site Scripting
CWE-347 13 Improper Verification of Cryptographic Signature
CWE-295 13 Improper Certificate Validation
CWE-674 12 Uncontrolled Recursion
CWE-863 12 Incorrect Authorization

Total 223

TABLE 1: Top 10 CWEs for Go with count and
description

Category ↓ Count(%) CR

Incorrect
Recursion
Design (1)

Incorrect
Arguments (1.1) 7 (10.8%) b

Incorrect
Return (1.2) 25 (38.5%) a

Deep
Recursion (1.3) 33 (50.7 %) a

Unexpected
Recursion (2)

Incorrect
Self-invoking (2.1)

Misusing
Namespace (2.1.1)

38 (29.9%) a/bMiscalling
Inherited
Method (2.1.2)
Misusing
Method
Overloading (2.1.3)
Missing
Undef
Instruction (2.1.4)

Incorrect
Cyclic
Invoking (2.2)

24 (18.9%) a/b

TABLE 2: Taxonomy of uncontrolled recursion Found in
OSS Projects [21] [CR: Constraint Reasoning Category

(§3.4)]

and description. All 223 vulnerabilities in these classes are
logical, some being umbrella terms, others more specific.
CWE-674 (Uncontrolled Recursion) is a critical issue for
Go and it directly contributes to other classes, including
CWE-400 (Uncontrolled Resource Consumption) and CWE-
770 (Allocation of Resources Without Limits or Throttling).
Together, these issues make up 79/223 (35%) CVEs in Table
1. Under the broader category of resource consumption,
CWE-674 is the only specific one with a well-defined cause,
hence our focus. We believe that constraint reasoning can
also detect other vulnerabilities.

To ensure GOSONAR’s soundness, we evaluated it on
a dataset [21] of uncontrolled recursion in real-world pro-
grams. The dataset includes 445 nontermination bugs from
3,142 GitHub commits in popular OSS projects like Linux
and Chromium. It categorizes 127 cases of uncontrolled
recursion into 2 major and 8 specific categories, as shown
in Table 2 and contains simplistic representative programs
for each category, with patched and vulnerable versions.

The dataset also indicates the prevalence of each cate-
gory and the type of constraint reasoning. All categories fall

into either category a or b, which GOSONAR can handle,
demonstrating GOSONAR’s superior performance over con-
temporary tools. , were created to test contemporary tools
and GOSONAR. We evaluated the best tools for termination
detection and nontermination proving. UAutomizer led the
termination category at SV-COMP (2017-2021). In 2020
and 2021, CPAchecker and 2LS placed second and third.
AProVE ranked in the top three (2017-2019). T2 outper-
formed Julia [22] and TNT [11].

4.3. Detailed Results

The evaluation of GOSONAR is shown in Table 3. The
table lists packages with at least one valid candidate, fol-
lowed by lasso. Some packages have unreachable recursions,
making them invalid.

Input. The table shows the binary sizes, which range from
6.76MB to 31.28MB due to static linking with libgo. The
total size of all binaries is 179.27MB, with an average of
12.81MB per binary. The table next shows the number of
nodes and edges for the CFG to Call Graph and lastly for
the Pruned Call Graph. The CFG ranges from 59,535 nodes
and 121,954 edges (reflect) to 246,325 nodes and 536,757
edges (net). The call graph drastically reduces this number
to 11,378 nodes and 19,790 edges (reflect) to 48,416 nodes
and 90,014 edges (net). GOSONAR further prunes the call
graphs to reduce the range to 703 nodes and 639 edges –
6,858 nodes and 11,972 edges.

Component Output. After the input, the table shows the
output of GOSONAR components. The first column shows
the number of candidates found by the candidate finder
(¶–§3.1), the second column shows how many can create
lassos by verifying reachability with a stem (·–§3.2), and
the last column shows how many pass the filter (¸–§3.3).
The table lists candidate recursions per package, ranging
from 2 (index) to 823 (go). Not all candidates form valid
lassos with a stem that can reach the recursion. Some
recursions are reachable via multiple paths, producing
multiple lassos per candidate recursion. The number of
lassos ranges from 1 (compress) to 17,710 (go). In total,
GOSONAR identifies 983 loops and 20,036 lassos across
all packages. After filtering, most packages have all lassos
satisfying the requirement, except for go, where only 293
out of 17,710 lassos pass the filter. Overall, GOSONAR
analyzes 2,439 lassos from all packages.

Ablation Analysis. We perform an ablation study to assess
the effect of each component of GOSONAR. For each form
of analysis, the table shows how many recursions can be
symbolically executed at least once, proving the reachabil-
ity of the recursion and how many can be verified to be
uncontrolled. We detail the three forms of analysis that we
have executed:

Constraint Reasoning (¶ + ¹). The first analysis approach
uses only constraint reasoning with guided symbolic ex-
ecution on candidates without verifying reachability, stem

Input Component Analysis

CFG CallGraph Pruned ¶ · ¸
Constraint
Reasoning

CR w/ Stem
Detection GOSONAR

Package ↓ Size(MB) #Nodes #Edges #Nodes #Edges #Nodes #Edges #Cand. #Lassos #Filt. #Exec. #Ver. #Exec. #Ver. #Exec. #Ver.

compress 11.26 92,235 188,989 18,830 32,879 1,966 2,692 2 1 1 0 0 0 0 1 1
database 10.84 88,413 182,738 18,189 32,067 1,801 2,662 2 8 8 0 0 0 0 0 0
encoding 14.18 118,806 252,480 23,346 42,101 2,791 4,832 37 173 173 0 0 0 0 2 1
fmt 10.02 82,370 168,695 16,876 29,411 1,579 2,267 46 1,760 1,580 0 0 0 0 207 0
go 21.04 174,880 377,940 34,131 62,211 4,401 7,493 823 17,710 293 1 1 10 9 13 9
html 13.18 108,241 226,141 21,816 38,982 2,492 4,019 5 6 6 0 0 0 0 0 0
index 8.55 75,410 155,142 14,254 24,790 1,269 1,306 2 2 2 0 0 0 0 0 0
math 11.68 96,570 199,606 19,597 34,511 2,156 3,213 7 145 145 0 0 6 2 6 2
net 31.28 246,325 536,757 48,416 90,014 6,858 11,972 11 23 23 0 0 0 0 0 0
path 10.03 82,401 167,065 16,853 29,182 1,585 2,022 2 2 2 1 1 1 1 1 1
reflect 6.76 59,535 121,954 11,378 19,790 703 639 7 30 30 0 0 0 0 1 0
sort 6.87 60,586 123,891 11,578 20,135 750 679 4 10 10 0 0 0 0 0 0
testing 11.59 95,708 197,256 19,809 34,885 2,143 3,019 3 7 7 0 0 0 0 0 0
text 11.99 98,199 202,718 20,127 35,509 2,196 3,313 32 159 159 1 1 1 1 52 1

Total 179.27 1,479,679 3,101,372 295,200 526,467 32,690 50,128 983 20,036 2,439 3 3 18 13 283 15
Average 12.81 105,691.36 221,526.57 21,085.71 37,604.79 2,335.00 3,580.57 70.21 1,431.14 174.21 - - - - - -

TABLE 3: Detailed evaluation of GOSONAR [Exec. = Lassos Executed Ver. = Lassos Verified Uncontrolled]
¶ Candidate Finder (§3.1) · Reachability Verifier (§3.2) ¸ Symbolic Execution Guide (§3.3) ¹ Constraint Reasoning

(§3.4)

detection, or call resolver. The table shows that very few
recursions can be analyzed and verified in this way. These
are the recursions in public functions which makes them
reachable without any stem. Three such cases can be seen
in packages go, path, and text all of which finish 3 recursion
and can be proven to be uncontrolled with constraint rea-
soning, demonstrating the general applicability of constraint
reasoning.

Constraint Reasoning with Stem Detection (¶ + · + ¹).
The next form of analysis uses stem detection on top of the
last form of analysis, but does not utilize the call resolver.
That is, it finds more recursions in private functions that
can be reached via the public function. Furthermore, it also
utilizes our insight into how public functions are chained
together in Go programs undertaking necessary initialization
to facilitate symbolic execution and improve the analysis
result. This form of analysis can execute 18 lassos, of which
13 can be proven to be uncontrolled.

GOSONAR. Lastly, the table shows how many lassos can
be executed and verified using all the components of
GOSONAR, including the call resolver which relies on
source code. The call resolver helps facilitate the symbolic
execution by providing concrete values for indirect calls,
which results in more lassos being executed for analysis. As
the table shows, adding the call resolver greatly increases
the number of lassos that can be executed. The number of
lassos that can be executed for multiple recursions increases
to 283, these serve as potential threats and can be scrutinized
manually depending on how many recursion they complete.

Only the last form of analysis uses the call resolver,
which relies on the source code that shows the applicability
of GOSONAR as a generalized binary analysis tool for

the detection of uncontrolled recursions. Our insights and
their effect on the analysis is reflected in the increase in
the number of lassos analyzed in each step. The majority
of lassos that could not be executed stem from undercon-
strained symbolic execution of a library and is an orthogonal
problem to be solved. These lassos fall into the category
no path or symbex errored category as mentioned in §3.4.
However, as can be seen, GOSONAR still finds and proves
15 uncontrolled recursions in all standard library packages
of Go. Some of these are already found and have associated
CVEs and some lassos originate from a single recursion
where GOSONAR finds multiple paths to trigger it. This
analysis answers our RQ1, GOSONAR finds 15 uncontrolled
recursions where the addition of each component increases
the overall effectiveness of GOSONAR.

Uncontrolled Recursions Detected. Table 4 answers
RQ2 by showing all uncontrolled recursions detected by
GOSONAR, their code location, and novelty. The table lists
the package and function name of each recursion. Some
recursions produce multiple lassos, indicating multiple un-
controlled paths. The table also shows the recursion size
(number of functions) and stem (1 to 5). It compares the
time taken to detect these lassos with and without the
symbolic execution guidance component (¸–§3.3), showing
a reduction in time. GOSONAR takes 838.92 seconds to
execute all lassos for at least 3 recursions without guidance
and 634.83 seconds with guidance. The average execution
time decreases from 64.53 seconds to 42.32 seconds. Lastly,
Table 4 shows whether the uncontrolled recursions are true
and if they are new bugs. Most of the recursions identified
by GOSONAR are true positives verified by creating PoCs,
except one. The false positive is a unique case explained in
the limitation section. Overall GOSONAR finds and proves

#Funcs Exec. Time (s)

Package Func. Name R S w/o ¸ w/ ¸ Ver.? New?

compress glob/Reader.Read 1 1 - 1.01 3 7

encoding binary.sizeof 1 3 - 12.18 3 3

5 465.35 357.36 3 3
4 117.51 46.68 3 3
4 17.98 26.38 3 3
3 26.79 8.72 3 3

filterExprList 2

4 36.79 18.83 3 3

Sign 1 1 69.10 62.38 7 -

3 35.04 24.23 3 3
3 1.62 1.49 3 3

go

appendReverse 1
3 1.32 1.40 3 3

2 2.18 1.06 3 3math mulRange 1 3 30.62 29.75 3 3

path Glob 1 1 33.18 41.97 3 7

text IsEmptyTree 1 1 1.45 1.40 3 3

Total 8 9 41 838.92 634.83 14 13
Average 64.53 42.32

TABLE 4: Uncontrolled recursions identified by
GOSONAR in standard library packages of Go

13 new lassos to be uncontrolled which represents the 5
vulnerabilities it finds.

Detection of Known Vulnerabilities. Table 5 answers
RQ3, that is how GOSONAR handles the previously
detected vulnerabilities which pose a real security threat.
As seen, among the 6 cases GOSONAR can identify all
of them, however, GOSONAR fails to verify that they are
uncontrolled recursion in nature. The ones that can not be
verified is due to limitations of symbolic execution and call
resolver of GOSONAR. An example of a call that cannot be
resolved with GOSONAR is explained in limitation section.
Angr uses an interface for the backend constraint solver
claripy which can use among others Z3 constraint solver.
However, sometimes the constraints become complex in
nature and angr throws an error in such case GOSONAR
can not continue the analysis.

4.4. Comparative Analysis

In order to answer RQ4 we have evaluated GOSONAR
against several state-of-the-art tools on a standard dataset
populated from patched nontermination bugs in OSS
projects caused by infinite recursion. Table 6 shows the
result of the contemporary tools along with GOSONAR.
The dataset does not have any representative program for
categories 2.1.1 and 1.3 due to the complexity of these
categories. However, GOSONAR shows that it can detect
1.3 or deep recursions in the primary evaluation. For each
category, the dataset contains a representative vulnerable
version (V) and patched version (P) of a program, as shown
in Table 6 with Type. The table has four outcomes for

CVE Package Function Identified? Verified?

CVE-2022-1962 go Parser 3 7
CVE-2022-28131 encoding/xml Decoder.Skip 3 7
CVE-2022-30632 path/filepath Glob 3 3
CVE-2022-30633 encoding/xml Unmarshal 3 7
CVE-2022-30631 compress/gzip Reader.Read 3 3
CVE-2022-30635 encoding/gob Decoder.Decode 3 7

TABLE 5: Previously detected uncontrolled recursions in
standard library packages of Go version 1.14.6 or earlier

each case, correct detection, maybe, unknown, and errored.
Given the nature of the problem, contemporary tools can
produce inconclusive results in their own way, which have
been represented in the dataset as maybe (?). When tools
cannot analyze a certain program, it is represented with
unknown (UN), and finally if it crashes or hits timeout, it
is represented with errored (E).

Correct detection means identifying a recursion as un-
controlled in the vulnerable version and controlled in the
patched version. As can be seen in Table 6, GOSONAR
outperforms all contemporary tools in all categories by
correctly detecting both the presence (vulnerable) and the
absence (patched) of uncontrolled recursion. As seen in the
table, there are very few cases in which contemporary tools
successfully analyze and detect vulnerability. Furthermore,
for categories 2.1.2 and 2.1.3, these can only be possible
for C++ programs that none of the tools handle. GOSONAR
on the other hand, uses binary, removes such dependency,
and analyzes them without any issues. The dataset iden-
tifies several points for the failure of contemporary tools,
among which the leading reasons for producing unknown are
pointer manipulation, arrays, and data structures. However,
modern programming relies heavily on these features which
makes these tools futile for real world programs. The only
modification in GOSONAR to analyze these binaries was that
(i) the call resolver component could not be used due to its
applicability, and (ii) stem detection used main as the only
acceptable starting point for lassos.

5. Discussion

This section discusses the limitations of GOSONAR
along with how they can be addressed in future work of
their own. These limitations pose a limited obstacle while
requiring significant investigation in order to be addressed
and thus are left out of scope of this work.

5.1. Limitation

Symbolic execution, especially an underconstrained one
on a heavily instrumented program, creates difficulty in
analysis. There are two major limitations we have faced that
could not be solved with GOSONAR, which are:

Unresolveable Function Call. As mentioned earlier, a key
contribution of GOSONAR is resolving indirect function
calls by incorporating the source code. However, there is

Type UAutomizer AProVE CPAchecker 2LS T2 GOSONAR

1.1 V 3 ? UN E E 3
P 3 ? 3 E E 3

1.2 V E ? UN UN E 3
P E ? UN 3 E 3

2.1.2 V - - - - - 3
P - - - - - 3

2.1.3

V-1 - - - - - 3
P-1 - - - - - 3

V-2 - - - - - 3
P-2 - - - - - 3

V-3 - - - - - 3
P-3 - - - - - 3

V-4 - - - - - 3
P-4 - - - - - 3

2.1.4 V 3 3 UN UN E 3
P UN 3 3 3 E 3

2.2

V-1 3 ? UN E E 3
P-1 3 3 3 3 E 3

V-2 UN ? UN UN E 3
P-2 UN ? UN UN E 3

TABLE 6: Comparative analysis of GOSONAR
3= Correct UN = Unknown E = Errorred ? = Maybe

V = Vulnerable/Non Terminating P = Patched/Terminating

type byteReader struct {
 fmt.ScanState
}

func (r byteReader) ReadByte() (byte, error) {...}

func (r byteReader) UnreadByte() error {...}

1
2
3
4
5
6
7

Figure 9: [math/big/intconv.go]
Unresolveable function call in Go containing data structure

wrapper

a case where GOSONAR fails to resolve a call due to the
design of Go. Figure 9 shows such a case where the data
structure byteReader on line 1 is used as a wrapper for
data structure fmt.ScanState to extend it by implement-
ing ReadByte and UnreadByte functions. The current
implementation of call resolver points to line 2, however no
function call is present to be analyzed by GOSONAR.

Control by Type. Second, we can see a failed case in
Figure 10, the only false positive for GOSONAR where
there is a recursive call to function Sign if the input
is a complex number. However, in order for it to be
uncontrolled, either the real part (re) or the imaginary
part (im) has to be a nested complex number as well,
which by definition is not possible. Furthermore, the code
also ensures that anyone outside of this package can not
implement the parent interface of complexVal – Value
by incorporating a private function in the interface. All
of this restricts the way to create a complex number
or a complexVal and thus GOSONAR finds this to

// A Value represents the value of a Go constant.
type complexVal struct{ re, im Value }

func Sign(x Value) int {
 switch x := x.(type) {
 ...
 case complexVal:
 return Sign(x.re) | Sign(x.im)
 ...
}

1
2
3
4
5
6
7
8
9

10

Figure 10: [go/constant/value.go]
Example of a recursion that can not be uncontrolled by

design enforced by type

be an uncontrolled recursion, whereas there is a hidden
termination condition in a broader context.

5.2. Future Work

GOSONAR establishes the foundation for several future
works in the detection of logical vulnerabilities in memory
safe language. These works can address the limitation of
GOSONAR or build on the idea of constraint reasoning for
different kinds of logical vulnerability.

Data Structure Initialization. A key contribution of
GOSONAR is demonstrating that a proper stem can lead to
data structure initialization necessary for triggering vulnera-
bilities. However, finding a function that calls all necessary
functions with concrete values is challenging. Future work
for GOSONAR includes finding a chain of functions that
initialize the data structure required to trigger vulnerabilities,
possibly using code completion ML models to find preamble
code for calling a target function.

PoC Generation. One insight we have while working
for GOSONAR is the lack of PoC for Go vulnerabilities.
Although every vulnerability fixed comes with a testing
function to ensure that the patch addresses the vulnerability,
a PoC serves a proof of the existence of a vulnerability
before a patch is released. Furthermore, PoCs also help
developers guide to the point of manifestation and facilitates
detection of root cause. Thus, automatic PoC generation can
be possible based on the constraints gathered to reach a point
in the program execution.

Control by Type Detection. One of the limitations of
GOSONAR is the lack of a way to detect control by type
where a recursion’s termination condition is enforced by
design. Modeling such a case would require similar efforts
to type confusion detection such as building a class tree
where the constraints can not be satisfied under the current
class tree. For example, in our example of the function Sign
if we can detect all the public functions that can create
a complexVal we can make a class tree which would
enforce that the real or imaginary part of a complex number
can not be of type complexVal itself.

6. Related Work

Nontermination is a heavily studied problem; however,
very few works provide a practical tool that can be used
on real-world programs. In program verification realm, the
datasets used are often synthetic, which encompasses vari-
ous kinds of recursive function. Among the very few works
aimed and evaluated against real-world programs, we find
that they are either evaluated against a representative version
of the vulnerability or use fuzzer to generate test cases
needed to verify the initial finding. Overall, the current body
of work on nontermination detection can be mainly divided
into two categories:

Termination Detection. The majority of termination detec-
tion employs some kind of ranking function like Proteus [25]
which summarizes the loop in order to detect termination.
On the other hand, Ultimate Automizer or UAutomizer [12]
abstracts all the program trace to automata and then unites
them for analysis with a ranking function. Lastly, one
work [28] uses ML model to learn the bounds of a loop
whose by product can be learning the termination condition
and subsequently termination detection.

Non Termination Detection. One of the oldest work
TNT [11] proves the non termination by generating coun-
terexample of termination based on revisit of recurrent set of
states. Whereas other works [7] focused on simplistic integer
programs with non-determinism and determines nontermina-
tion by reversal of a program’s transition system. Continua-
tion of Proteus, Loopster [26] tried to reduce nontermination
to a reachability problem and finally used path dependency
automaton [27] to capture dependency among several di-
verging paths of a loop. More practical solutions such as
2LS [19] use inter-procedural abstract interpretation for a
modular termination analysis for C programs. AProVE [8]
is the only work that uses constraint solving; however, they
used it to find a recurrent set in a loop to determine non-
termination. Lastly, only one work [29] works on real-world
programs and successfully finds bugs in C/C++ programs;
however, it specifically focuses on infinite loops where the
termination condition is decided by a primitive data type.
Moreover, it uses fuzzing for 240 hours to generate hang test
cases, which are then analyzed to detect such nontermination
cases.

All of these works provide a basis for detection of
nontermination based on different forms of analysis of the
program where a lot of assumptions and restrictions are
put on the program. This prevents these works from being
applied directly to real-world programs to analyze within a
reasonable amount of time. GOSONAR is a work first of its
kind that uses a real-world dataset along with an evaluation
of the standard library of a complicated language like Go.

7. Conclusion

In conclusion, the proliferation of safe memory lan-
guages has redirected attention towards logical vulnerabili-
ties and their corresponding attack surfaces. The inherent

complexity in modeling and detecting these logical vul-
nerabilities has forced contemporary tools to hypothesize
solutions that are often impractical for real-world appli-
cations. GOSONAR introduces an innovative methodology
for modeling a specific logical vulnerability, namely un-
controlled recursion, through the analysis of a first-order
derivative of the constraints at a particular execution point.
GOSONAR has demonstrated its efficacy by surpassing all
contemporary tools on a standard dataset, while also incor-
porating techniques to scrutinize Go programs. GOSONAR
has identified 5 novel vulnerabilities within the standard
library of Go, which significantly impact every Go program
developed. We anticipate that GOSONAR will become an
integral component of the Go package vetting pipeline and,
in the future, will facilitate the modeling of additional
logical vulnerabilities that present challenges for detection
by contemporary methodologies.

Acknowledgments

We would like to express our sincere gratitude to the
anonymous reviewers for their constructive and insightful
comments, which helped us improve the quality and clarity
of this paper. We also thank the shepherd for their valu-
able guidance and support throughout the revision process.
This research was supported in part by the ARO award
W911NF2110081 and the National Security Agency under
Grant H98230-22-1-0333. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of our sponsors.

References

[1] AddressSanitizer: A fast address sanity checker |
USENIX. [Online]. Available: https://www.usenix.org/conference/
atc12/technical-sessions/presentation/serebryany

[2] Fact sheet: ONCD report calls for adoption of memory
safe programming languages and addressing the hard research
problem of software measurability | ONCD. [Online].
Available: https://www.whitehouse.gov/oncd/briefing-room/2024/02/
26/memory-safety-fact-sheet/

[3] The urgent need for memory safety in software products |
CISA. [Online]. Available: https://www.cisa.gov/news-events/news/
urgent-need-memory-safety-software-products

[4] E. D. Berger and B. G. Zorn, “DieHard: probabilistic memory
safety for unsafe languages,” vol. 41, no. 6, pp. 158–168. [Online].
Available: https://dl.acm.org/doi/10.1145/1133255.1134000

[5] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable
software verification,” in Computer Aided Verification: 23rd Interna-
tional Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings 23. Springer, 2011, pp. 184–190.

[6] M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman,
“T2: temporal property verification,” in Tools and Algorithms for the
Construction and Analysis of Systems: 22nd International Confer-
ence, TACAS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings 22. Springer, 2016, pp.
387–393.

[7] K. Chatterjee, E. K. Goharshady, P. Novotný, and D. Žikelić,
“Proving non-termination by program reversal,” in Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, ser. PLDI 2021. Association
for Computing Machinery, pp. 1033–1048. [Online]. Available:
https://dl.acm.org/doi/10.1145/3453483.3454093

[8] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski et al., “Prov-
ing termination of programs automatically with aprove,” in Automated
Reasoning: 7th International Joint Conference, IJCAR 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
19-22, 2014. Proceedings 7. Springer, 2014, pp. 184–191.

[9] Golang Contributors, “encoding/gob: stack exhaustion in de-
coder.decode (cve-2024-34156),” https://github.com/golang/go/issues/
69139, 2023, accessed: 2024-09-24.

[10] Google. (2024) Go use cases. [Online]. Available: https://go.dev/
solutions/case-studies

[11] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko,
and R.-G. Xu, “Proving non-termination,” in Proceedings of the
35th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, ser. POPL ’08. Association for
Computing Machinery, pp. 147–158. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1328438.1328459

[12] M. Heizmann, J. Hoenicke, and A. Podelski, “Termination analysis
by learning terminating programs,” in International Conference on
Computer Aided Verification. Springer, 2014, pp. 797–813.

[13] D. Honnef. (2024) Staticcheck - the advanced go linter. [Online].
Available: https://staticcheck.dev/

[14] M. Michalik, “C vs rust vs go: Performance analysis,” Jul
2019. [Online]. Available: https://medium.com/@marek.michalik/
c-vs-rust-vs-go-performance-analysis-945ab749056c

[15] oscar6echo. (2024) Rust vs. c vs. go runtime speed comparison.
[Online]. Available: https://github.com/oscar6echo/rust-c-go-speed

[16] owasp. (2023) Owasp top 10 api security risks – 2023. [Online].
Available: https://owasp.org/API-Security/editions/2023/en/0x11-t10/

[17] Praetorian. (2022) A static analysis tool for securing go code.
[Online]. Available: https://github.com/praetorian-inc/gokart

[18] G. Saileshwar, R. Boivie, T. Chen, B. Segal, and A. Buyuktosunoglu,
“HeapCheck: Low-cost hardware support for memory safety,”
vol. 19, no. 1, pp. 10:1–10:24. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3495152

[19] P. Schrammel and D. Kroening, “2ls for program analysis: (competi-
tion contribution),” in Tools and Algorithms for the Construction and
Analysis of Systems: 22nd International Conference, TACAS 2016,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings 22. Springer, 2016, pp. 905–907.

[20] securego. (2024) Go security checker. [Online]. Available: https:
//github.com/securego/gosec

[21] X. Shi, X. Xie, Y. Li, Y. Zhang, S. Chen, and X. Li,
“Large-scale analysis of non-termination bugs in real-world OSS
projects,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2022. Association
for Computing Machinery, pp. 256–268. [Online]. Available:
https://dl.acm.org/doi/10.1145/3540250.3549129

[22] F. Spoto, F. Mesnard, and É. Payet, “A termination analyzer for java
bytecode based on path-length,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 32, no. 3, pp. 1–70, 2010.

[23] M. Strehovský. (2024) Compare binary sizes of canonical hello
world in 17 different languages. [Online]. Available: https:
//github.com/MichalStrehovsky/sizegame

[24] K. V. (2018) How a go program compiles down to
machine code. [Online]. Available: https://getstream.io/blog/
how-a-go-program-compiles-down-to-machine-code/

[25] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li, “Proteus:
computing disjunctive loop summary via path dependency analysis,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE
2016. Association for Computing Machinery, pp. 61–72. [Online].
Available: https://dl.acm.org/doi/10.1145/2950290.2950340

[26] X. Xie, B. Chen, L. Zou, S.-W. Lin, Y. Liu, and X. Li, “Loopster:
static loop termination analysis,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017. Association for Computing Machinery, pp. 84–94.
[Online]. Available: https://dl.acm.org/doi/10.1145/3106237.3106260

[27] X. Xie, B. Chen, L. Zou, Y. Liu, W. Le, and X. Li,
“Automatic loop summarization via path dependency
analysis,” vol. 45, no. 6, pp. 537–557, conference Name:
IEEE Transactions on Software Engineering. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8241837?
casa token=G98C3foPXe4AAAAA:JOHFEbeFPP7gnLMD2Siap
gJmA1hfXxVnVnvv2CnmjG GJYw-ZxGluWjEX6GthsIqRTjlmRv

[28] R. Xu, J. Chen, and F. He, “Data-driven loop bound learning
for termination analysis,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. Association
for Computing Machinery, pp. 499–510. [Online]. Available:
https://dl.acm.org/doi/10.1145/3510003.3510220

[29] Y. Zhang, X. Xie, Y. Li, S. Chen, C. Zhang, and X. Li, “End-
watch: A practical method for detecting non-termination in real-
world software,” in 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2023, pp. 686–
697.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper presents GoSonar, a static analysis tool
for identifying uncontrolled recursions in Go programs.
GoSonar identifies potential recursions through callgraph
analysis, and then uses inductive constraint reasoning to de-
termine whether they are in fact infinite recursions. GoSonar
has detected 5 new vulnerabilities in the Go standard library.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field
• Addresses a Long-Known Issue

A.3. Reasons for Acceptance

1) This paper presents a new static analysis tool to
detect uncontrolled recursions in Go programs. This
is an important problem, and GoSonar is able to
outperform contemporary tools in finding these
bugs in complex settings.

2) The paper provides a valuable step forward in an
established field by enhancing the capabilities of
currently available tools in identifying bugs in Go
programs. GoSonar has identified 5 new vulnera-
bilities in the Go standard library.

A.4. Noteworthy Concerns

1) The evaluation mainly focuses on tools used for
identifying uncontrolled recursions in Go programs.
However, there are many previous works that focus
on solving this problem for other programming
languages, and it is unclear whether GoSonar is
conceptually different from them or an adaptation
of their ideas for Go programs.

