
Extracting Threat Intelligence From Cheat Binaries For
Anti-Cheating

Md Sakib Anwar
anwar.40@osu.edu

The Ohio State University
USA

Chaoshun Zuo
zuo.118@osu.edu

The Ohio State University
USA

Carter Yagemann
yagemann.1@osu.edu

The Ohio State University
USA

Zhiqiang Lin
zlin@cse.ohio-state.edu
The Ohio State University

USA

ABSTRACT

Rampant cheating remains a serious concern for game develop-
ers who fear losing loyal customers and revenue. While numerous
anti-cheating techniques have been proposed, cheating persists in a
vibrant (and profitable) illicit market. Inspired by novel insights into
the economics behind cheat development and recent techniques for
defending against advanced persistent threats (APTs), we propose
a fully automated methodology for extracting “cheat intelligence”
fromwidely distributed cheat binaries to produce a “memory access
graph” that guides selective data randomization to yield immune
game clients. We have implemented a prototype system for Android
and Windows games, CheatFighter, and evaluated it on 86 cheats
collected from a variety of real-world sources, including Telegram
channels and online forums. CheatFighter successfully counter-
acts 80 of the real-world cheats in under a minute, demonstrating
practical end-to-end protection against widespread cheating.

KEYWORDS

Anti-cheating; Program analysis; Automated client hardening

ACM Reference Format:

Md Sakib Anwar, Chaoshun Zuo, Carter Yagemann, and Zhiqiang Lin. 2023.
Extracting Threat Intelligence From Cheat Binaries For Anti-Cheating. In
The 26th International Symposium on Research in Attacks, Intrusions and
Defenses (RAID ’23), October 16–18, 2023, Hong Kong, China. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3607199.3607211

1 INTRODUCTION

One of the largest entertainment industries today is the computer
game industry, which is projected to reach a market size of $200
billion by 2024 [3]. Currently, mobile games account for 52% of the
gaming market, followed by console games at 28%, and PC games

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 16–18, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10. . . $15.00
https://doi.org/10.1145/3607199.3607211

at 20% [3]. Unfortunately, where there are games, there are also
incentives to build and sell cheats for profit. Cheaters often seek to
modify game-critical variables to achieve unfair advantages such
as “god mode” or infinite ammo.

Prior studies show that 37% of players have admitted to cheating
at some point [26], and benign players who have had a negative
experience due to cheating are 48% less likely to buy in-game items
and 77% more likely to stop playing the game altogether, leading
to lost revenue [1, 14]. Furthermore, various underground mar-
kets (e.g., UnKnoWnCheaTs [8]) fuel rampant cheating by selling
prepackaged cheats and relevant knowledge.

In response, numerous defenses have been proposed, includ-
ing operating system security modules (e.g., Security Enhanced
Linux [7]), program hardening and obfuscation [6], and server-
side anomaly detection [13]. Unfortunately, despite these prior
proposals, cheaters continue to find workarounds to exploit new
weaknesses to the detriment of game studios and publishers.

Interestingly, we observe that while game cheating appears at
first glance to be analogous to other forms of hacking, there is a
unique economic factor at play in this illicit ecosystem that does not
exist in other contexts. Specifically, in order for cheat developers
to attract customers, the prepackaged cheats they sell must work
repeatedly, not just once like in the case of attacks launched by
advanced persistent threats (APTs). Conversely, games are easy
for defenders to update thanks to centralized digital storefronts
like Steam and Google Play. This creates a unique opportunity to
automatically and rapidly counteract cheats sold on underground
markets. Unfortunately, this opportunity is currently unexplored be-
cause existing defenses are untargeted, making no use of sold cheat
packages.

In light of this, we propose an agile and automated defense that
aims to cripple the underground market by automatically diver-
sifying game clients based on intelligence extracted directly from
the sold prepackaged cheats. Specifically, we propose to recover the
payloads from prepackaged cheats to guide targeted data structure
randomization in game clients to efficiently thwart widespread
cheating. Our solution is fully automated and does not require any
human in the loop, so defenders can cut off attack vectors faster
than cheaters can monetize them. In essence, we are turning the
underground market’s own efficiency against itself.

17

https://doi.org/10.1145/3607199.3607211
https://doi.org/10.1145/3607199.3607211
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607199.3607211&domain=pdf&date_stamp=2023-10-16

RAID ’23, October 16–18, 2023, Hong Kong, China Md Sakib Anwar, Chaoshun Zuo, Carter Yagemann, and Zhiqiang Lin

Notice how our proposed approach does not aim to make cheat-
ing impossible. Instead, our objective is to eliminate the economic
incentives that can turn cheating into a widespread issue that drives
away benign players in droves. Furthermore, the solution we pro-
pose is unique in that it is a payload-oriented analysis of attack
payloads, as opposed to typical exploit analysis that focuses on the
vulnerability. This difference reflects our goal of removing economic
incentives as opposed to patching a buggy piece of code.

In designing our solution, we quickly realized that traditional
methodologies such as dynamic analysis and sandboxing (seen typ-
ically in malware analysis) are not suitable for achieving our vision.
First, like malware, cheats can employ evasive tactics, including
delayed execution and sandbox detection. Second, unlike malware,
cheats are often context-sensitive. For instance, a cheat may change
an ammo value only when a particular weapon is wielded by the
cheater. Furthermore, to make our solution practical and safe for
developers, our design should minimize assumptions about the ex-
ecution environment and avoid invoking adverse effects that could
arise from executing the cheat blindly. Therefore, we opt for a static
approach to intelligence extraction that then carefully guides a
subsequent dynamic analysis.

Due to the unique constraints surrounding our proposed defense,
we had to identify and overcome several technical challenges spe-
cific to our payload-oriented analysis. First, cheats are typically
distributed as stripped native binaries, even when the target is a
mobile game. In such cases, our systemmust be able to analyze bina-
ries that mix native instructions and interpreted bytecode. Second,
our solution must identify only the logic related to performing the
cheat and ignore extraneous capabilities like evasion. Third, in order
to effectively leverage the statically extracted intelligence about
the cheat to guide targeted data randomization, our system must
be capable of mapping its findings back to source code, bridging
several semantic gaps throughout the game’s code.1

With these criteria in mind, we present CheatFighter, a de-
fense prototype for Windows and Android games that uses 1) an
API-aware data dependency-based algorithm to extract intelligence
from cheat packages, 2) dynamic analysis to translate extracted
intelligence to source code, and then 3) source code analysis to
selectively randomize the sensitive variables targeted by cheaters.
CheatFighter operates as a fully automated standalone tool that
developers can directly incorporate into their existing pipeline to
(re)harden game clients.

We have evaluated CheatFighter using 86 real-world cheats
collected from real sources that include Telegram channels, on-
line forums, and cheat sharing websites, targeting popular online
games like Call of Duty and PUBG for Windows and Android.
CheatFighter successfully extracts the payloads of 80 cheats and
counteracts them with selective data randomization, without any
developer assistance. We manually validated that the automatically
applied countermeasures yield no observable impact on the game’s
performance or functionality. Our evaluation shows that it takes
CheatFighter less than a minute on average to analyze a cheat
and apply changes to the client for defense. We have made our code
publicly available at: https://github.com/OSUSecLab/CheatFighter.

1Most production game engines leverage automatic language transformation (e.g., C#
to C++) and ahead-of-time (AOT) compilation.

Table 1: Post Classification for Cheat Sharing Website

Post Type

Attack

Surface

Cheat Category

Release Coding

% # %

Client

Memory Modifying 183 40.0 94 65.0
Static Code Patching 53 11.6 5 3.5
ShellCode 71 15.5 15 10.3

Unidentified Unidentified 152 33.1 31 21.4

Total 459 - 145 -

2 OVERVIEW

2.1 Cheat Taxonomy

Cheating techniques for computer games can be divided based on
the following attack surfaces: (1) server-side cheats, (2) network
channel cheats, and (3) client-side cheats [35, 51]. Examining the
first two categories, server-side cheats exploit vulnerabilities in
the game servers [29, 45] whereas network channel cheats exploit
communication weaknesses between the server and client, such
as missing integrity checks [54]. Notice how these categories rely
on exploitation techniques that are not specific to computer games.
Consequently, they can be mitigated with existing defenses [30, 46].

Conversely, defending against client-side cheats is significantly
harder, as such attacks occur on player computers outside the game
developer’s direct control. Client-side cheats can be further sub-
divided into three types: bots, static code patching, and dynamic
memory modification. Bots aim to automate redundant player tasks,
such as mining in-game resources, and can be mitigated with anom-
aly detection techniques [18, 47]. In contrast, static code patching
and dynamic memory modifications directly target the game’s code
and runtime state, making them harder to mitigate.

Targeted Cheats. Prior work [49, 53] has identified memory mod-
ifying cheats as one of the biggest threats to gaming. Furthermore,
we have scraped a popular cheat sharing website and classified
posts using term frequency–inverse document frequency (tf-idf).
Based on our results presented in Table 1, 40% of the posts under
the Release prefix and 65% of the posts under the Coding prefix
are related to memory modifying cheats, making it by far the most
prevalent type.2 In summary, due to their prevalence and difficulty
to mitigate, we focus on memory modifying cheats for our work.

2.2 Cheat Development

Attacker Model.Our threat model considers an adversary or cheat
developer who can fully compromise the client device, meaning
that they can escalate their privileges and alter the way the OS
communicates with the game. However, unlike other attacks, this
scenario requires the adversary to design an attack that can be
replicated across multiple devices and instances. This imposes a
unique constraint on the adversary regarding the vulnerabilities
they can exploit to create a successful cheat. Nevertheless, we have
2Some posts could not be classified with high confidence based solely on keyword
tf-idf. We label these as Unidentified to be conservative.

18

https://github.com/OSUSecLab/CheatFighter

Extracting Threat Intelligence From Cheat Binaries For Anti-Cheating RAID ’23, October 16–18, 2023, Hong Kong, China

int main(int argc, char** argv) {
..
char *package = "com.tencent.tmgp.sgame";
pid = getPID(package);
sprintf(mem_file_name, "/proc/%d/mem", pid);
sprintf(map_file_name, "/proc/%d/maps", pid);
memfd = fopen(mem_file_name, "r");
library_name = "libil2cpp.so";
base_address = get_module_base((char *) &library_name);
add = base_address + 0x820cc24;
lVar1 = readValueL(add);
add2 = base_address + 0x50;
lVar1 = readValueL(add2);
add3 = lVar1 + 0x8;
..

}
ulong get_module_base((char *) &library_name) {

..
FILE *mapping = fopen(map_file_name, "r");
..
char *pcVar1, *base_address_string;
ulong base_address; char file_content[1024];
do{

pcVar1 = fgets(file_content,0x400,local_18);
..
pcVar1 = strstr(file_content, library_name);

} while (pcVar1 == (char *)0x0);
base_address_string = strtok(file_content,"-");
base_address = strtoul(base_address_string,

(char **)0x0,0x10);
return base_address;

}
undefined8 readValueL(__off64_t param_1) {

..
pread64(memfd,&local_8,0x4,param_1);
return local_8;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36

Figure 1: Code Excerpt from a Decompiled Cheat (Android)

observed adversaries assuming similar capabilities (e.g. full control,
privilege escalation) on the user’s side as well.

Cheat developers typically overcome modern defense mecha-
nisms (e.g. ASLR) in locating address of critical variable by cal-
culating addresses with respect to some stable references and by
traversing object pointers. By applying both static and dynamic
analysis to the game using various tools (e.g., [2, 9, 16, 25]), the
cheat developer can discover a path to the critical variable and use
it to access the critical data. In particular, a cheat developer has to
overcome three obstacles:

Access to GameMemory.Amemorymodifying cheat must access
the memory of another process overcoming the OS’ memory iso-
lation mechanisms. Cheats typically run as root or employ virtual
environments [4] in order to access debugging APIs (e.g., ptrace
in Linux, KERNEL32 APIs in Windows) or directly read the game’s
memory (i.e., /proc/$pid/mem in Linux).

Path to Critical Variable. A cheat developer finds the critical
variable in memory by searching for known values and making
changes to them using dynamic analysis tools. Once identified, a
more robust way of reaching the critical variable is needed that does
not rely on trial and error. The most reliable way of doing this is by
finding a chain of pointers leading to the critical variable, starting
from fixed reference point (e.g. base address of libraries mapped
into memory). However, without access to the source code, a cheat
developer has to extensively test discovered pointer chains to ensure

that they work every time. Thus, finding a working pointer chain
is extremely tedious and laborious.

Creating Cheat. Finally, cheat developers need to develop a cheat
with this pointer chain that can inspect the runtime memory of the
game to reach the target variable. Depending on the target platform,
architecture, and even the compilation method used, this can be
achieved in multiple ways. Nevertheless, as cheats need to use
debugging APIs, they are often implemented in low-level languages
(such as C) and compiled to run on a specific target device.

2.3 Motivating Example

To illustrate exactly how a cheat works, Figure 1 shows a piece of
code decompiled from a real-world Android cheat. The cheat code
is part of an APK (often an assest) that can run as a separate pro-
gram. Once the cheat binary is copied to a directory with execution
privilege and executed by the APK, the first thing the cheat does is
find the pid of the game. This can be done by looking through the
/proc directory and reading the cmdline file under each process
to search for the package name of the target game. For brevity, we
have excluded this code from the figure.

Once found, the cheat has all the information it needs to read and
modify the game memory. In particular, Figure 1 shows two helper
functions: get_module_base, which retrieves the base address of
a given referencing name3 by parsing the content of the memory
map file, and readValueL, which reads from a specific location in
the process memory. We can see on line 34 that a pread64 call has
been made on a file descriptor memfd, which was initialized with the
“/proc/$pid/mem” file (line 7). Finally, the param_1 in the function
acts as an offset for the call to pread64, which allows the cheat to
read from a certain offset of thememory. A full graph representation
of all the dereferences and offset arithmetic performed by this cheat
program is shown in Figure 2.

2.4 Challenges & Insights

From the example shown in Figure 1 and discussed in §2.3, we can
see that recovering the chain of pointers used by a cheat binary in
order to guide a defense like data structure randomization is chal-
lenging due to the lack of context or references within a stripped
cheat binary. Gathering the scattered intelligence and represent-
ing them in a unified form to be used as a guide for game client
hardening raises several technical challenges:

Locating Pointer Heads. As seen in Figure 1, the head of the
pointer has two defining identities: a referencing name and the
runtime base address of the referencing name in the memory of the
game. For example, in Figure 1, the variable base_address and the
referencing name libil2cpp.so collectively form the head of the
pointer. Since the value of base_address will change with each
execution due to dynamic resolving by the OS loader, our analysis
must retain the context of libil2cpp.so to robustly identify the
pointer chain.

3We use the term “referencing name” to mean named aliases in a broad sense. These
include symbols in the program binary and filenames in process memory maps.

19

RAID ’23, October 16–18, 2023, Hong Kong, China Md Sakib Anwar, Chaoshun Zuo, Carter Yagemann, and Zhiqiang Lin

base_address(libil2cpp.so)

+0x820cc24

+0x0050

+0x0008 +0x0014 +0x0010

+0x0014

+0x0020 +0x00d4 +0x00e4

+0x0018

+0x009c +0x00c4

base_address(libunity.so)

+0x13439e0

+0x0028

+0x00a4

base_address(libGameCore.so)

+0x28af9e0 +0x20bf370

+0x0008

+0x0030

+0x0048

+0x0024 +0x0018 +0x00e0 +0x0140 +0x00c0

+0x0010 +0x0028 +0x00f8

+0x0010 +0x0018 +0x0444

+0x0008

+0x0030

+0x0058

+0x01b0 +0x00e0 +0x0018 +0x0140

+0x00e0 +0x0080

Head Node

Offset

Final Address

Dereference

First Offset

Figure 2: Memory Graph Used in a Cheat for Arena 5v5.

With a systematic investigation of current cheat development
practices, we noticed that these base address variables can be iden-
tified using an API-aware data flow analysis. For example, in Linux,
programs must rely on the information in the “/proc/$pid/maps”
file. The operations done to this file to extract the required informa-
tion can be modeled into a series of API calls. In Windows, cheat
programs use the base address of the process itself as the reference.
Specifically, cheats use KERNEL32 APIs to find the game process by
name and subsequently its base address. In both cases, an API-aware
data flow analysis, starting from either the “/proc/$pid/maps” file
or the name of the game process, can locate the variable holding
the base address.

Identifying Valid Offset &MemoryAccess. It is not the case that
any arbitrary addition operation will eventually lead to a memory
access in the pointer chain. Furthermore, it is not guaranteed that
the offset is a single value or computed in one step. For example,
to get a correct offset, several values may be added to the current
pointer. Therefore, the challenge when observing a value being
added to the current address is deciding whether it is the final offset.

Our insight for dealing with this challenge is to focus on the
value’s usage because no matter how the valid offset is generated, it
must eventually be used to access the game’s memory (e.g., derefer-
encing the data). Such memory accesses are often achieved via par-
ticular function calls (e.g., read). For instance, the offset 0x820cc24
in line 10 has been used to perform a dereference at line 11 by using
the function call readValueL, which subsequently uses pread64 at
line 34. Furthermore, as evident from line 10 and line 12, the same
address might be used in multiple further address calculations later
in the cheat program’s execution.

Mapping Back to Source. Although the cheat program contains
intelligence about the target game’s internal workings in the form

of the pointer chains it uses, these chains only have meaning once
considered in the context of the game’s memory state. In other
words, to fully utilize the cheat program in protecting the game,
these addresses and offsets need to be resolved into symbols (data
structure names) and offsets so that the hardening step in our
defense can correctly identify the targeted variables. However, this
is easier said than done since the code a developer writes goes
through various code transformations within the game engine. For
example, in the popular Unity game engine, developers write code
in C#, which is then automatically transformed by the engine into
C++, bundled with additional assembly code, and then compiled
and stripped into a shared library. This ahead-of-time compilation
is not only efficient, but also necessary for resource constrained
platforms like Android. The final executable is then mapped to the
process memory, where cheat binaries then target critical variables
using their reverse engineered pointer chains. Thus, a challenge
emerges in bridging the semantic gap between the pointer chains
used by the cheat program to target runtime memory variables
in the game’s process and the original source code representation
of those variables. Without the latter, any attempts to randomize
data structures would be best effort and potentially game breaking.
In short, this challenge boils down to a type inference memory
forensics problem.

Also notice that since the cheat’s pointer chains target a partic-
ular version of the game, our solution cannot rely on modifying
the game client to make the analysis easier, as this would break the
pointer chain and with it, the true semantics. Thus, our solution
must analyze the cheat in the context of a production version of the
game client, which is itself stripped. Interestingly, we notice that we
can use reflection properties of base data structure (e.g. Object in
Java, System.Object in C#) to find the class name and subsequently
the target field, with the help of the recovered final offset.

20

Extracting Threat Intelligence From Cheat Binaries For Anti-Cheating RAID ’23, October 16–18, 2023, Hong Kong, China

proc/$pid/maps

xrefs

API aware DDG

open read search convert

base address
variable

API Sequence

referencing
name

offset

memory access

offset

taint source

class unknown{
...
field unknown;
...

}

Runtime MemoryMAG

class super{
...
classname = “a”;
...

}

Source Code

AST Modifiertarget class
& offset

Modified AST

upcasting

Modified
Source Code

1010....
........
........
........
....0101

Cheat
Binary

AST Generator

class

field

10101010100101
10101010100101

...

...
10101010100101
10101010100101
10101010100101
10101010100101

*a

*b

a

b

a

b

c

c d
class
name

field
offset

Figure 3: CheatFighter Design. Note that ❶ denotes Head Node Identification, ❷ Children Node Discovery, ❸ MAG Translation,

and ❹ Selective Client Obfuscation

Automating Client Obfuscation. Field offset randomization for
security hardening is a well explored topic that has even seen
recent adoption within the Linux kernel via RANDSTRUCT for
Clang. However, current state-of-the-art frameworks require the
developer to specify where to apply randomization via a special
keyword, and require use of a specialized compiler that supports
this keyword. Since compiler modification is required, current work
focuses on only a subset of languages, namely C++.

Unfortunately, game developers typically use higher level lan-
guages like C#, not C++, and game engines employ proprietary
compilers that are not easy to modify. These factors combined
make current off-the-shelf randomization solutions poorly suited
for our usage scenario.

However, if our solution can identify targeted variables at source
code level (see previous challenge), then it can apply randomization
directly to the source’s abstract syntax tree (AST), prior to compila-
tion. This would remove any reliance on the developer being in the
loop, and avoid any compatibility issues with their existing com-
piler toolchain. Additionally, our solution can add padding fields to
ensure that simple signature searches for critical data structures in
memory will fail, further thwarting cheat programs.

Unified Representation of Intelligence. Finally, although we
have described how to identify the cheat intelligence in a cheat
program, we still require a unified representation for all these scat-
tered bits of reverse engineered knowledge implemented by the
cheat developer. To this end, we propose an encoding that we call
the Memory Access Graph (MAG), which aims to retain the context
(referencing name), pointer chains (both offset additions and mem-
ory accesses), and branching in the chains in an easy to understand
and visualize format. Figure 2 shows the MAG for a real-world

cheat program, where each root node is the head of a pointer chain
and the leaf nodes are the game variables targeted by the cheat.

3 DESIGN

We have addressed the aforementioned challenges with the insights
we have with respect to MAG, and designed CheatFighter, a bi-
nary analysis tool that can extract MAG from a cheat binary and
translate it with an API-aware, context-sensitive, data dependence
analysis. At a high level, as explained in §2.4, CheatFighter is
composed of four components, each of which addresses one chal-
lenge:

❶ Head Node Identification (§3.1). It scans the cheat binary
code to locate each API by following the control flow graph.
Next, by matching the series of APIs with predefined pat-
terns, it locates the code that is being used to extract the head
of the pointer. Furthermore, it connects the variable holding
the base address to the referencing name as to retain context,
both of which together forms the head node of the MAG.

❷ ChildrenNodeDiscovery (§3.2). It launches context-sensitive
data dependency analysis that takes each head node as a
source. It tracks the accumulated offsets and memory access
to create children nodes in the MAG where each edge repre-
sents a memory access and each node an offset addition and
ultimately an address. While building the MAG it simultane-
ously keeps track of all the sub-paths, which are combined
to create the complete MAG.

❸ MAG Translation (§3.3) It runs a dynamic analysis of the
game and reveals the data structures associated with each
node of MAG guided by the reflection properties of the lan-
guage the games are written in.

21

RAID ’23, October 16–18, 2023, Hong Kong, China Md Sakib Anwar, Chaoshun Zuo, Carter Yagemann, and Zhiqiang Lin

address perms ... pathname

85880000-8d359000 r--p ... /data/app/.../libil2cpp.so

8d359000-8df92000 rw-p ... /data/app/.../libil2cpp.so

8ec1a000-8ec1b000 rw-p ... /data/app/.../libil2cpp.so

8ec1b000-8ec20000 r--p ... /data/app/.../libil2cpp.so

8ec20000-8eca2000 rw-p ... /data/app/.../libil2cpp.so

6b53b000-6db54000 r--p ... /data/app/.../libGameCore.so

6db54000-6e0d5000 rw-p ... /data/app/.../libGameCore.so

6e583000-6e584000 rw-p ... /data/app/.../libGameCore.so

6e584000-6e589000 r--p ... /data/app/.../libGameCore.so

6e589000-6e60b000 rw-p ... /data/app/.../libGameCore.so

06000000-07173000 r--p ... /data/app/.../libunity.so

07173000-071b6000 rw-p ... /data/app/.../libunity.so

Figure 4: Memory Mapping of Arena 5v5 in Android

❹ Selective Client Obfuscation (§3.4) It takes in the names of
the target variable and the source code to generate and mod-
ify the ASTs to selectively obfuscate the code by randomizing
existing fields and by adding padding fields.

In the interest of clarity, we will use Android as the running con-
crete example to explain CheatFighter’s design and our solutions.
However, our approach generalizes to other systems, which we
demonstrate by also implementing support for Windows and eval-
uating Windows-based cheats. We elaborate on the effort required
to add support for additional OS in §3.5.

3.1 Head Node Identification

Identifying the head node of the MAG means identifying the vari-
able that holds the base address and finding the referencing name
together, which can be read from the memory map file. The mem-
ory map file contains information about the shared objects that
have been mapped in the memory of the process. Figure 4 presents
part of the memory map file for the game Arena 5v5. Each line of
the file shows information related to a shared object. Among them,
there are two important pieces of data: 1) the name of the shared
object (i.e., the referencing name), such as libil2cpp.so for the
first line; 2) the addresses of the memory region to which the shared
object has been mapped, such as 0x85880000 to 0x8d359000 for
libil2cpp.so. Therefore, the base address (e.g., 0x85880000 for
libil2cpp.so) of a shared object can be found by parsing the
content of the memory mapping file. In order to extract the cheat
intelligence, CheatFighter needs to identify the variable holding
the base address of the shared object and its referencing name,
detailed below.

Base Address Identification. As mentioned earlier, this can be
modeled as the output of a series of operationsmade on themapping
file and its content. More specifically, CheatFighter needs to
identify the following operation as modeled by APIs: 1) opening
the mapping file (e.g., fopen); 2) reading the content from the file
(e.g., fgets); 3) searching for a particular line (e.g., strstr); 4)
extracting a substring and converting it to a number (e.g., strtoul).
Since the cheat is often developed with low-level programming
languages (e.g., C/C++), APIs are used to open, parse the memory
map file, search the shared object of interests, and obtain their base
addresses. Through systematic enumeration of all possible APIs,
we have identified 20 of them that are relevant, as shown in Table 2.
The parameters in bold are used to link them together based on the

Table 2: The APIs involved in the identification of base ad-

dresses

Operation Function Synopsis

File Open

fopen fopen(*pathname, mode);
open open(*pathname, flags, ...);

File Read

fgets fgets(buf, size, stream);
gets gets(*stream);
fscanf fscanf(stream, format, ...);
read read(file_descriptor, ...);
fgetc fgetc(*stream);
fread fread(ptr, ... ,stream);
fwscanf fwscanf(*stream, format);
vfscanf vfscanf(*stream, fmt, ...);

String Search

strstr strstr(*haystack, *needle);
strcasestr strcasestr(*haystack, ...);
memcmp memcmp(*str_1, *str_2, n);
regexec regexec(*preg, str, ...);
strcmp strcmp(*str_1, *str_2);
strncmp strncmp(*str_1,*str_2, n);

String to Number

strtoul strtoul(number_pointer, ...);
atoi atoi(*number_pointer);
sscanf sscanf(... , format, ...);
atol atol(*number_pointer);

data dependence. The base address variable is the return value of
the last API call.

For example, in our running example (line 19 in Figure 1), we no-
tice that the mmap file path string (i.e., /proc/$pid/maps) is the pa-
rameter for the file opening API call, which is required. Meanwhile,
the string itself is not a common string, as it has aliases such as
/proc/%s/maps and /proc/self/maps. Therefore, CheatFighter
starts the analysis by looking for the path string of the memory
map file and all its aliases. Once such a variable (so-called varnode
in Ghidra PCode) is identified, CheatFighter then keeps track
of the varnode in the data dependency graph (DDG) and records
the APIs encountered. During the process, if an API sequence that
matches Table 2 has been found, the base address variable is identi-
fied, which is typically the output of the last API call (e.g., strtoul
on line 28). This whole process can be seen in ❶ of Figure 3 where
the analysis starts from the mapping string and gives the result
in the form of base address variable to be used in the next step,
children node discovery (§3.2).

Referencing Name Discovery. Although the base address vari-
able has been identified from the cheat binary, referencing name
is still unknown and is required to denote a head node in MAG.
To this end, we need to find the concrete referencing name of the
corresponding base address variable. For instance, in the running
example, CheatFighter needs to find the referencing name (i.e.,
libil2cpp.so) for variable base_address.

Meanwhile, even though the base address variable is connected
with referencing name in the semantic level (i.e., the base address
is the runtime base address of referencing name in memory) syn-
tactically they are not part of same instruction, API call or even
function body. But from the running example, we can clearly see
that they can be connected by the API call series. In particular, the
base address variable is the output of the series, and referencing
name is the input of the API call in the string search step because

22

Extracting Threat Intelligence From Cheat Binaries For Anti-Cheating RAID ’23, October 16–18, 2023, Hong Kong, China

referencing name is used to find the target line in the memory map
file. As such, by tracing the inputs of that API call, the referencing
name can be located. As presented in Table 2, there are several
API calls that can be used to search for strings. We have marked
the parameter that it is looking for, which can potentially contain
the referencing name. This can be seen in ❶ of Figure 3 where the
referencing name is the input of the search API in the sequence.

3.2 Children Node Discovery

Once the head node is discovered, CheatFighter needs to identify
the nodes (offsets) and the edges (memory accesses) of the MAG.
As mentioned in §2.4, CheatFighter uses a sub-path extraction
algorithm to identify the related instructions to extract the children
nodes. To be more specific, while the nodes are being discovered, it
is often not enough to keep an eye on the latest node or the leaf
node, since the current state (sub-path) of a MAG can be stored
in a local or global variable for later use. This is why for every
node discovered so far, we need to maintain two things: 1) a set of
registers or variables (either local or global), i.e., pointers holding
reference to the node, and 2) a sub-path representing the path from
the root node to the current node. As we analyze more instructions,
we identify more operations, and we keep adding or updating the
sub-paths.

However, to maintain accurate data dependence, we need to
resolve the indirect references (local or global variables) i.e. we
need to carry out pointer analysis. Existing works on static pointer
analysis are often performed on the whole program at the beginning
of the analysis, which often adds unnecessary overhead. We have
employed an on-demand in-place pointer analysis using backward
slicing for that purpose. Algorithm 1 presents an overview for the
discovery of children nodes. As can be observed, the first step is
to taint the base address variable (line 4) and to add a sub-path for
the referencing name against the base address variable in SPS (line
5). Once this initialization is done, the algorithm can start tracking
operations to identify offsets and memory accesses.

Offset Tracking. Tracking offset means tracking integer addition
on any node(s) (on set of associated variables) of the sub-path
constructed so far. The offset might not always be a literal constant,
and recursive pointer resolutions are needed to find the proper
offset that is being added. Yet, once an offset addition is identified,
we notice that the offset can fall into the following cases:

(1) Literal value, in which there is no need to further analyze
the offset. This offset can be used to update the data depen-
dence of the output variable to reflect the offset addition.

(2) Result of a series of arithmetic operations on different
integers. These operations are built upon each other, and
when all the values in the expression are literals, the final
value can be calculated.

(3) Local variable holding the concrete value in which a pointer
analysis is triggered to identify the latest value held by that
particular variable.

(4) Global variable that has been initialized before. In this case,
we need to perform pointer analysis.

Algorithm 1 Sub-path Extraction (SPE)
1: Global Variables: 𝑀𝑀𝐴: memory accessing APIs; 𝑆𝑌𝑆𝐶𝐴𝐿𝐿: input/output mapping for

system calls;𝑀𝐴𝐺 : Memory Access Graph
2: Local Variables: 𝑆𝑃𝑆 : sub-path pointer set;𝑇𝑎𝑖𝑛𝑡𝑒𝑑 : set of tainted variables;𝐴𝑂 : accumulated

offset
3: procedure SPEA(𝑏𝑎𝑠𝑒,𝑏𝑎𝑠𝑒𝑁𝑎𝑚𝑒, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠)
4: Tainted.add(𝑏𝑎𝑠𝑒)
5: SPS.addHeadNode(𝑏𝑎𝑠𝑒,𝑏𝑎𝑠𝑒𝑁𝑎𝑚𝑒)
6: TrackOperations(𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ,𝑇𝑎𝑖𝑛𝑡𝑒𝑑 , 𝑆𝑃𝑆)
7: MAG.addSubPath(𝑆𝑃𝑆)
8: procedure TrackOperations(𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ,𝑇𝑎𝑖𝑛𝑡𝑒𝑑 , 𝑆𝑃𝑆)
9: for (𝑝𝐶𝑜𝑑𝑒)← GetPCodes(𝑎𝑑𝑑𝑟𝑒𝑠𝑠) do
10: 𝑖𝑛𝑝𝑢𝑡𝑠 ← GetInput(𝑝𝐶𝑜𝑑𝑒)
11: 𝑜𝑢𝑡𝑝𝑢𝑡 ← GetOutput(𝑝𝐶𝑜𝑑𝑒)
12: switch pCode do
13: case DataArithmetic
14: if 𝑖𝑛𝑝𝑢𝑡𝑠 ∈ Tainted then

15: if 𝑝𝐶𝑜𝑑𝑒 is AdditionOperation then

16: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← FindConcreteOffset(𝑝𝐶𝑜𝑑𝑒)
17: AO.add(𝑜 𝑓 𝑓 𝑠𝑒𝑡)
18: Tainted.add(𝑜𝑢𝑡𝑝𝑢𝑡)
19: else

20: Tainted.removeIfPresent(𝑜𝑢𝑡𝑝𝑢𝑡)
21: case BranchingOperation
22: 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ← GetBranchingAddress(𝑝𝐶𝑜𝑑𝑒)
23: TrackOperations(𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔𝐴𝑑𝑑𝑟𝑒𝑠𝑠)
24: if IsUnconditional(𝑝𝐶𝑜𝑑𝑒) then return

25: case DataMovementOperation
26: 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ← ResolvePointer(𝑖𝑛𝑝𝑢𝑡𝑠)
27: Tainted.removeIfPresent(𝑝𝑜𝑖𝑛𝑡𝑒𝑟)
28: if 𝑖𝑛𝑝𝑢𝑡 ∈ Tainted then Tainted.add(𝑝𝑜𝑖𝑛𝑡𝑒𝑟)
29: case CallOperation
30: 𝑎𝑝𝑖 ← GetAPI(𝑝𝐶𝑜𝑑𝑒)
31: if 𝑖𝑛𝑝𝑢𝑡 ∈ Tainted then

32: if 𝑎𝑝𝑖 ∈ MMA then

33: 𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠𝑇 𝑦𝑝𝑒 ← GetMemoryAccessType (𝑎𝑝𝑖)
34: 𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑒𝑟 ← SPS.find(𝑖𝑛𝑝𝑢𝑡𝑠)
35: 𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑒𝑟 .addOffset(𝐴𝑂)
36: 𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑒𝑟 .memoryAccess(𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠𝑇 𝑦𝑝𝑒)
37: else if 𝑎𝑝𝑖 ∈ SYSCALL then

38: 𝑜𝑢𝑡𝑝𝑢𝑡 ← SYSCALL.getOutput(𝑎𝑝𝑖)
39: Tainted.add(𝑜𝑢𝑡𝑝𝑢𝑡)
40: else

41: 𝑒𝑛𝑡𝑟𝑦𝑃𝑜𝑖𝑛𝑡 ← GetEntryPoint(𝑎𝑝𝑖)
42: TrackOperations(𝑒𝑛𝑡𝑟𝑦𝑃𝑜𝑖𝑛𝑡)
43: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 .next() ≠ null then TrackOperations(𝑎𝑑𝑑𝑟𝑒𝑠𝑠 .next())

(5) Read fromfile during runtime, which is the only case where
we cannot resolve the offset, as the content of the file depends
on both the runtime environment and the game itself.

Memory Access Identification. To access the memory, cheats
have to use API calls and there are only a handful of them which
can be traced to identify memory accesses. However, the primary
question is how to access the memory of a game process from the
cheat. This can be done via a number of ways such as:

(1) Debugging APIs: Most modern day OS ships with debug-
ging APIs which can be used to observe the memory of a
running process for debugging purpose, for example ptrace
in Linux, which can be used to access memory of another
process.

(2) Memory File: Fortunately for cheat developers in Linux
everything is a file even the memory of a process which can
be found under “/proc/$pid/mem” file which can be opened
and read by any process that possesses the root privilege,
which can be done in Android.

(3) Special APIs: In Linux, there are special APIs such as
process_vm_readvwhich lets anyone with special privilege
directly read from an offset of another process’s memory.

23

RAID ’23, October 16–18, 2023, Hong Kong, China Md Sakib Anwar, Chaoshun Zuo, Carter Yagemann, and Zhiqiang Lin

…

iVar1 = _process_vm_readv_syscall;

if (param_7 != false)

{

iVar1 = _process_vm_writev_syscall;

}

syscall((long)iVar1,(ulong)(uint)param_1,param_2,param_3,

param_4,param_5,param_6);

…

1

2

3

4

5

6

7

8

9

Figure 5: Excerpt from a Decompiled Cheat

Thus, by tracing tainted input to any of these APIs we can iden-
tify memory access made by a cheat. However, the goal of the cheat
is to read the memory at a certain offset which can be done by open-
ing a file (fopen) and then seeking (lseek) or using APIs that take
offset as a parameter such as pread64 or process_vm_readv. From
our analysis we have seen nearly all the cheats take the second op-
tion. Thus, specifically tracking calls to these functions with tainted
variable will give us memory access operation performed on the
nodes of the MAG. This step can be seen in the algorithm under the
call opcode handling, where the first node on which the operation
is executed is identified and then finally updated (line 34 - 36)

However, in some cases, we have seen the use of the function
“syscall” to call the aforementioned functions to access the mem-
ory. It works by associating an integer number with each syscall
such as pread64 is represented by the number 0x43, so instead of
calling pread64 a cheat might call syscall with this value. For
instance Figure 5 shows a cheat calling syscall with global vari-
ables that contains the necessary number. This approach works
to avoid detection by anti-cheat process monitors that detect the
use of certain functions on the target process. CheatFighter has
handled these calls for ARM64 currently, since these numbers are
architecture dependent.

An overview of this component’s process of finding children
nodes by analyzing each type of PCode while simultaneously main-
taining an active set of sub-paths has been shown in ❷ of Figure 3.
Which starts its work with the base address variable and via recur-
sive taint analysis through all possible instruction constructs the
sub-paths piece by piece and then joins them to produce the whole
MAG which is the output of this component.

3.3 MAG Translation

As mentioned in §2.4, the code a developer writes goes through var-
ious forms of transformation which often even includes lifting from
one language to another, since most game engines follow “write
once compile anywhere" rule. C# being one of the most popular lan-
guages for game development, most game engines let developers
write code in C#. However, it is not feasible to be run on other
platforms such as Android and thus the games engines need to
either 1) run the code in a virtual machine inside the target device
(e.g. Mono) or 2) lift the code to a compatible one and pre-compile it
(Il2Cpp by Unity). For game industry we have seen both in practice;
however, for Android we have seen the second one (AOT compila-
tion) being used more recently. Thus, mapping the addresses to the
source code becomes a challenging task especially for low resource
platforms like Android.

base_address(libil2cpp.so)

+0xDF728 +0x0080 +0x00B8

+0x0060

+0x00B0

SyncedServerData

+0x0048

Weapon[]

+0x0058

Weapon

+0x005C

NetworkedWeapon

NetworkedWeapon.ammoInClips

Figure 6: Translated MAG for an Open Source Game

We first attempted to map the addresses back to the compiled
executable, as the compiled executable is loaded directly into the
memory of the process and is the closest to the MAG. However,
game engines compile not only the code a developer writes, but
also many engine-related components such as game physics. Fur-
thermore, it strips and obfuscates the code in every step and adds
automated checks so that developers do not have to worry about
common programming errors. All these make analyzing the exe-
cutable extremely difficult, and furthermore, even if one can map
the first pointer of the MAG to the memory, there is no way to know
what data structure it points to. To be more specific, the binary is
static, whereas MAG and the addresses are dynamic, which is why
a static analysis alone is not enough to translate MAG.

Interestingly, we have noticed that every high level program-
ming language which are used for game development are capable
of reflection and although game engines lift the code, strip and
obfuscate the binaries they have to retain these properties. One of
these properties are, the namespace and name of a class, for exam-
ple in Java there is object.getClass().getName(), in C# there
is object.GetType().Name etc. CheatFighter injects a shared
library into the game with a simple function that utilizes these APIs
or their implementation in low level language to resolve an address
or pointer, and then uses Frida to call that function and resolve
the nodes in the MAG. This way the other compiled executables
are untouched and we can use Frida to load this after everything
else has been loaded into the memory keeping the memory layout
intact.

Furthermore, this method is independent of the specific release
of a game as the reflection property is usually under the core object
which rarely changes. This whole process has been shown in ❸ of
Figure 3, where each leaf node of the MAG points to a field but the
immediate parent points to a data structure. We can get the offset
of the field into the object from MAG but to get the name of the
class we need to upcast it to the base or super object containing
reflection properties such as classname. These two information

24

Extracting Threat Intelligence From Cheat Binaries For Anti-Cheating RAID ’23, October 16–18, 2023, Hong Kong, China

together can help in determining the target class and the field of
the cheat or the particular leaf node. As a cheat can have multiple
leaf nodes it can also have multiple target class and fields. Figure 6
shows the translated MAG for an open source game that we have
chosen for our end-to-end case study. As we can see, the leaf node
and its immediate parent tells us that this particular MAG targets
the class NetworkedWeapon and the field ammoInClips.

3.4 Selective Client Obfuscation

The end result of CheatFighter is a cheat resistant version of the
game client, achieved via selective code obfuscation. As mentioned
in §2.4, our solution must achieve this across multiple game engines,
without heavily modifying the current development pipeline, which
would delay industry adoption. Thus, we propose a cross-engine,
compiler-independent solution that requires zero intervention from
the developers for selective and targeted obfuscation of the client.
CheatFighter achieves this by working on the source code level
and by relying on the compiler’s ability to generate ASTs that can
be modified.

For proof-of-concept, we used the ROSLYN [38] compiler to
generate the AST for the user-developed source code. ROSLYN is a
.NET compiler that offers C# and Visual Basic languages with rich
code analysis APIs. We have selected this because popular game
engines use C#, even for Android game development where the
code is transformed by the game engine. However, other tools such
as clang can be employed to achieve this for other languages like C,
C++, and so on. Once the AST is generated, CheatFighter locates
the targeted data structure and fields from last step in the AST.
Once identified, CheatFighter changes the position of the field
in the data structure simply by swapping two nodes of the AST.
Furthermore, it adds some padding fields to change the signature
of the data structure to make it even harder for cheating tools to
locate the data structure in memory by signature matching.

A brief overview of this process can be seen in ❹ of Figure 3,
which starts by generating the AST and identifying the target based
on the last step. In this case, the target class a and the target field
b are marked by red. Once identified, CheatFighter changes the
position of the field, thus changing the offset into the class and adds
padding data (d in figure) to further change the signature of the
data structure.

3.5 Other Platforms

Due to the difference in architecture, development process, and
final execution environment, both games and cheats are different
on Windows. However, we have found that memory modifying
cheats for Windows games follow the same principles and the
cheat intelligence can still be modeled into a MAG. The extraction
process is very similar to the design mentioned above, with slight
modifications to accommodate the differences.

Cheat Format. The resulting cheat for Android, which is based on
Linux, can be an executable in ELF format (embedded in a larger
APK), while for Windows it has to be in PE format. However, this
detail is irrelevant for the operation of CheatFighter, as it works

on the lifted IR rather than the binary itself. This abstraction en-
ables us to use a high-level signature that is independent of the
architecture or platform specifics.

Cheat Analysis Tool. Although Ghidra can lift the binary to
PCode, it struggles with handling Windows-based PE files, so we
have opted for the state-of-the-art tool IDA Pro for analyzing the
Windows cheats. Like Ghidra, IDA also lifts the binary to an IR
and offers a set of APIs to parse, transform and analyze the binary.

Memory Mapping. Lastly, we have seen that memory mapping
is not as easily accessible in Windows and thus the head node of
MAG on Windows often starts with the base address of the game
rather than some referencing name. This reduces the complexity
as the responsibility of the first component becomes half. Second,
to read the memory of another process, windows cheats directly
employ debug APIs, such as KERNEL32 APIs, instead of memory file
as in Linux or Android.

However, apart from this, the rest of the CheatFighter pipeline
for extracting the MAG and applying selective code randomization
remains the same. This demonstrates the generality and platform
independence of our MAG encoding.

4 EVALUATION

We have implemented CheatFighter on top of Ghidra 10.0 with
4,540 lines of our own Java code to analyze the cheat binaries. We
have used Frida 15.1.16 for dynamic analysis and Android NDK r23
LTS to compile the MAG translation shared library. We have used
the latest Roslyn compiler to generate and modify the AST for client
obfuscation. In this section, we present the evaluation results. We
first describe our experiment setup, including how we collected the
cheats, in §4.1, and then present the effectiveness and efficiency of
our tool in §4.2 and §4.3, respectively. Finally, we present additional
findings in §4.4.

4.1 Experiment Setup

Just like malware, it is trivial to collect a few cheats, but it is chal-
lenging to collect dozens of cheats due to the lack of a centralized
distribution point. We applied two strategies in collection: 1) Search-
ing. We use Google Search to locate possible cheats or groups that
sharing cheats such as Telegram channels by keywords such as
“PUBG wall hack". However, we found that only few cheats are real
and the rest are indeed malware, and only few Telegram channels
are still active. It costs us significant time and efforts to identify
the valid information from the massive results; 2) Expansion. We
found that in the cheats we have collected, they often contain
vendor information or group information such as vendor website.
Meanwhile, cheats distributors would send advertisements on the
Telegram channel to attract users to join other Telegram channels,
such as cheat sharing channels. As such, we enlarge our dataset by
following those information and collect more cheats.

As a result, we have collected 86 unique cheats from multiple
sources. In particular, we collected 34 cheats from Telegram chan-
nels where channelmemberswould share some cheats and 41 cheats
from the Kuaimao forum in which there is a sub-forum where users
upload purchased or self-made cheats. An additional 10 cheats were

25

RAID ’23, October 16–18, 2023, Hong Kong, China Md Sakib Anwar, Chaoshun Zuo, Carter Yagemann, and Zhiqiang Lin

Table 3: The targeted victimgames and their cheats (*#Installs

based on US Play Store Data, A : Android,W: Windows)

Victim Game Platform Release #Installs Engine #Cheats #Binary

CrossFire Mobile Android 12-03-2015 - Unity 1 1
Arena 5v5 Android 11-30-2016 10M+ Unity 29 55
PUBG Mobile Android 03-23-2017 500M+ UE4 35 74
COD Mobile Android 10-01-2019 100M+ Unity 4 24
Royal Match Android 02-25-2021 10M+ Unity 1 1
LOL Android 10-27-2021 - Unity 1 14
PUBG New State Android 11-11-2021 10M+ UE4 2 2
Sausage Man Android 04-29-2022 10M+ Unity 2 18

Assault Cube Windows 04-01-2022 - CUBE 1 1
Bard’s Tale Windows 06-17-2005 - Dark Alliance 1 1
Super Tux Windows 12-22-2021 - SuperTux 1 1
COD MW3 Windows 11-08-2011 - IW 1 1

collected from various sources, such as UnknownCheat website
[8] and Discord. We collected the Windows cheat by searching for
usage of a popular cheating library for windows. To get a better
understanding we have even created a cheat for a well maintained
online multiplayer open source game [5] (1,400+ stars on Github)
following current cheat developing practices. San Andreas is a pop-
ular game by Rockstar, which was later ported to Android using
the game engine Unity, thus the name San Andreas Unity.

Selection Criteria. Since the sources from which we collect cheats
are used to share a variety of cheats, we have to filter to identify
memory modifying ones. To this end, we have created two polices
to identify relevant cheats:

(1) Cheat Format. Cheats can be developed using scripting lan-
guages such as Lua. Our targeted cheats are those compiled
into native binaries. We identify such cheats by inspecting
whether the cheat contains ELF binaries for Android or Win-
dows.

(2) Cheat Type.We focus on memory modifying cheats, which
requires accessing “/proc/$pid/maps” (or its aliases) or de-
bug APIs. We filter the cheats that do not contain references
to these strings or APIs.

With these policies, we eventually collected 86 cheats that target
13 popular online multiplayer games. A high-level overview of the
cheats collected and the targeted victim games is presented in Ta-
ble 3, sorted by the release date of the game. The number of installs
for games available on the US Google Play store show that the most
popular game, PUBG Mobile, has more than 500M+ downloads. Fur-
thermore, the Android games are built on two of the biggest game
engines in the market: Unity and Unreal Engine 4 (UE4). Finally, it
shows the number of binaries found in those cheats, and it appears
that a cheat may have multiple binaries for various objectives.

Environment Setup. The experiment was carried out on a single
Intel Core i7-8700 3.2GHz machine with 16GB DDR4-2666MHz
memory running Ubuntu 20.04. 4 instances of Ghidra were run
concurrently in headless mode to analyze the cheat binaries and
extract MAG.

4.2 Effectiveness

Quantifying False Positives & False Negatives. By applying
CheatFighter on the 86 cheats, we have extracted MAG for 80

of them. During the analysis, 193 binaries have been identified
from the cheats and all of them contain references to the string
“/proc/$pid/maps” or debugAPIs. From the binaries, CheatFighter
identified 5,399 functions of interest and analyzed 12,351 instruc-
tions. As a result, CheatFighter produced 31 unique MAG for
the 13 games. With these results, we first need to quantify the
false positives and false negatives of CheatFighter before diving
deeper into the results. We define a false positive (FP) as the event
of identifying a MAG that has not been used to access or modify the
memory, and a false negative (FN) as the event of CheatFighter
failing to extract the MAG even though it is present in the cheat.

FP Analysis. To check the FP, we randomly selected a cheat from
each game and compared the MAG with our manual finding. Note
that for the cheats selected for the validation, we have made no
assumption about their particular implementation, and the man-
ual analysis was done on the decompiled source code produced
by Ghidra. Encouragingly, we have found that all the memory ac-
cess graphs extracted by CheatFighter aligned with our manual
findings without any false positives.

FN Analysis. To our surprise, CheatFighter did not produce a
MAG for 6 cheats (with an FN rate of 6.97%). We inspected these
cheats and found out the root cause is that the offset used to tra-
verse memory comes from file inputs, not values hardcoded in the
program code. Particularly, we noticed that these cheats read the
offset from a file (e.g., the temporary file /sdcard/Android/.me)
into an array and then use them as offset at different places of the
pointer chain. Since CheatFighter does not dynamically execute
the cheat, and does not currently model filesystem accesses, it will
not yield a complete MAG in such cases. We discuss our prototype’s
limitations and planned future work in §5.

Detailed Results. Table 4 presents the result for memory access
graphs extracted by CheatFighter, and this result is categorized
by the game they are targeting and is divided into five major sec-
tions starting with the input, analysis both in forward and backward
(back slicing for pointer analysis) and finally the result along with
the type of memory access done by the cheats. To avoid analyzing
any duplicated cheats, CheatFighter uses the MD5 hash of the
cheat to index each of them. However, multiple cheats, though
they have different MD5s, they produce the same memory access
graphs, indicating they shared the same intelligence. Therefore,
we do not report the detailed results for these cheats and instead
use the averaged result in Table 4 to present them with a count
number, and a more detailed version of their result presented in
Table 6 in Appendix. The input shows the number of binaries found
in a particular cheat and their size in KB. For cheats with multiple
binaries, the combined size is presented. Details regarding the anal-
ysis are represented in terms of functions, instructions, and PCode
analyzed by our tool. Finally, the output is presented by the number
of times a MAG is observed in different cheats, height, number of
branches and edges in the MAG produced. The output section also
contains the number of bases or referencing name used by a cheat
along with their name. The detailed results are presented below,
categorized by the component related as explained in §3.

26

Extracting Threat Intelligence From Cheat Binaries For Anti-Cheating RAID ’23, October 16–18, 2023, Hong Kong, China

Table 4: MAG evaluation result. Note that for the rows without MD5 values, we present the total number of cheats in that row,

since these cheats have the same MAG.

Input Forward Analysis Backward Analysis Output Memory Access

Game Platform Cheat MD5 #Bin

∑
Size #Func #Ins #PCode #Func #Ins #PCode Height #Branch #Edges #Base Bases Read Write

CFM Android 4e349c25d1c5e303f73b9fa8b94934dd 1 652 60 3,754 15,215 60 61,009 212,449 1 3 3 2 [TS][U] ✓ ✗

Arena 5v5 Android

0a45409737c036f9d59c5feb427ba9c5 1 12 4 11 42 4 69 220 1 1 1 1 [GC] ✓ ✗

2e8268d32dc22c31dd8579bca6b7f7d7 4 48 16 44 168 16 276 880 1 1 1 2 [GC][U] ✓ ✗

* (10) 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

11a0894dd4bcc57fac657dc244e597a8 1 1,039 3 47 219 3 868 2,718 7 14 46 1 [GC] ✓ ✗

c632aeaaecbe67487f0bf6f69416cb38 1 21 7 319 1,459 7 3,356 8,521 8 16 55 2 [GC][U] ✓ ✗

* (3) 1 79 3 103 501 3 558 1,393 8 16 55 3 [GC][U][IL] ✓ ✗

* (4) 1 83 4 171 841 4 773 2,047 8 20 66 3 [GC][U][IL] ✓ ✗

* (4) 3 129 10 315 1,591 10 1,235 3,334 8 22 72 2 [GC][U] ✓ ✗

* (2) 2 139 9 382 1,966 9 1,314 3,499 8 26 89 2 [GC][IL] ✓ ✗

76bab2ee423c05c1b6f10abc52653683 1 358 16 412 1,182 16 4,663 13,299 10 14 122 2 [GC][IL] ✓ ✓

04caab0a8f0b10d7750ae1d424034a7b 3 41 11 175 837 11 9,727 29,105 10 22 74 3 [GC][U][IL] ✓ ✗

PUBG Android

397446459fe284a2c10f676b57c03982 1 13 3 6 22 3 46 152 1 1 1 1 [UE4] ✓ ✓

* (19) 1 13 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

* (3) 1 13 4 11 42 4 69 220 1 1 1 2 [UE4][GC] ✓ ✗

* (8) 1 14 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

* (3) 14 184 55 198 865 55 983 3,104 1 5 5 2 [UE4][TS] ✓ ✓

9a2cec9ac23cc6b9713d983d202a04ed 1 13 4 11 51 4 58 190 5 1 5 1 [UE4] ✓ ✓

COD Android

* (3) 1 12 4 11 42 4 69 220 1 1 1 1 [IL] ✓ ✗

ac97f45290f238e5346f0ef5ae839cb9 21 269 83 264 1,032 83 1,568 4,945 1 3 3 3 [IL][GC][U] ✓ ✓

Royal Match Android c8b4767dc7a0b57ce608173cbc7e6b15 1 8 4 31 115 4 2020 7445 6 1 7 1 [IL] ✓ ✓

LOL Android 6cdee600b5085c0c1d27c2a4d1654869 14 202 59 195 851 59 990 3197 1 12 12 4 [GC][TS][U][NPP] ✓ ✓

Sausage Man Android

38fa5a9ba3a271ec9e2ad0724eae24d9 4 68 18 104 353 18 792 2546 4 5 5 2 [IL][U] ✓ ✗

217ac1c9109a9e0103d364a4356dbd40 14 527 56 201 883 56 1117 3391 10 15 70 2 [IL][U] ✓ ✓

PUBG2 Android

bf111d5d095f9dc0d597cf0c93af7791 1 13 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

214d2b41ba49a3773c66befc0e1a4e4c 1 12 4 11 42 4 69 220 1 1 1 1 [GC] ✓ ✗

SA Unity
★

Android - 1 8 4 31 117 4 2121 7638 8 1 8 1 [IL] ✓ ✓

Assault Cube Windows 5c0d8bfbb3589032f846cebb699993e1 1 23 1792 1969 - 535 532 - 1 7 7 1 [S] ✓ ✓

Bard’s Tale Windows 5dc6952102781bc2d8970d62f5d22a01 1 18 1392 1520 - 212 206 - 1 10 10 1 [S] ✓ ✓

Super Tux Windows 42b9cafa7a6153d00fe2654ee01387e0 1 15 690 771 - 270 264 - 1 6 6 1 [S] ✗ ✓

COD MW3 Windows 3a2d4279b71d30b9d29887a44335375b 1 411 1066 1172 - 733 788 - 1 9 9 1 [S] ✗ ✓

[GC]: libGameCore, [IL]: libil2cpp, [U]: libunity, [UE4]: libUE4, [TS]: libtersafe, [NPP]: libNssPhysicsPlugin, [S]: Self ★Custom cheat for open source game

Head Node Identification. The focus of the head node identifi-
cation is to find the referencing name and the base address, but
depending on the referencing name that a cheat uses, we can infer
where the logic of the code lives. That is depending on the engine
used, and the main logic of a game can often be found in the shared
object(s) or libraries used in a game and these also contain the loca-
tion of the critical variables that a cheat developer wants to access.
Table 4 shows the referencing name used by each cheat. From the
table it is apparent that for all Unity games, libil2cpp.so works
as a preferable base address, i.e., most critical data can be found in
the said shared object.

Moreover, we can also see that a library can be used to attack a
number of games, such as libGameCore, which is a common library
used in game development. We have seen this library used as a base
for 5 out of 13 games we have analyzed. From the list of referencing
name the cheat targets we can also identify libraries that need to
be protected to invalidate any memory-modifying cheat. To be
more specific, take Figure 2 for example, by identifying the libraries
used for base address, developers can compile them with different
orderings for the data structure or different compiler optimizations
to invalidate all cheats targeting these libraries on a high level.

Children Node Discovery.We have chosen 3 distinct properties
to explain the complexity of a MAG: height, number of branches,
and edges. For example, from Table 4, we can see that more memory

accesses are performed for targeting Arena 5v5 than other games,
resulting in more nodes and complex networking in the MAG,
which is evident in Figure 2. This means that creating a working
cheat for Arena 5v5 requires more skill and time. Furthermore,
complicated graphs are easier to break via randomization since
there are more candidate edges to modify in future versions of the
game client. In addition, it can be observed that with the presence of
multiple cheats for the same game, we can speculate how frequently
the data structures or the memory layout changes due to the update
in client version. PUBG is more prone to frequent updates than other
games in our dataset, leading to it havingmany cheats with different
MAG.

Case Studies.We present a case study for a MAG that is contained
in 19 cheats for PUBG Mobile. The decompiled code in Figure 7
shows the simplest MAG with only one offset. The associated data
structures for these addresses can be used by anti-cheating soft-
ware, as robust signatures [19, 20, 37] to detect cheaters currently
using these cheats, thus defending against a line of cheaters as well.
As stated earlier, it is common for different cheats to use the same
MAG which is possible due to the knowledge sharing among cheat
developers via dedicated websites [8]. Thus, by using one signature
(MAG), anti-cheating tools can block multiple polymorphic cheats.

Furthermore, it can be observed from Figure 2 that for any sub-
path the first offset is significantly greater than the others. Across

27

RAID ’23, October 16–18, 2023, Hong Kong, China Md Sakib Anwar, Chaoshun Zuo, Carter Yagemann, and Zhiqiang Lin

int main(void) {

char *package = "com.tencent.tmgp.pubgmhd";

int pid = getPID(package);

char *library_name = "libUE4.so";

long base_address = get_module_base(pid,library_name);

long node_1 = base_address + 0x41b6ae0;

float new_value = 75.0;

WriteAddress_FLOAT(package,node_1,new_value);

puts(&DAT_00101818);

return 0;

}

1

2

3

4

5

6

7

8

9

10

11

Figure 7: Case Study for PUBG

different versions of a game, a change in this first offset is inevitable,
but a portion of the MAG can still be used in subsequent cheats.
Thus, by breaking the smaller sub-chains that have existed across
different cheats, developers can further stop the usage of similar
attacks. For instance, considering the two sub-paths for the game
Arena 5v5: 1) ((((base_address(libil2cpp.so) + 0x9759f44)* + 0x50)*
+0x08)* + 0xa4)* and 2) ((((base_address(libil2cpp.so) + 0x6873f9c)* +
0x50)* +0x08)* + 0xa4)*, these two sub-paths differ from each other
by only one node and the sub-chain has been found in 16 binaries
from 3 different cheats for the game Arena 5v5. Developers can
take advantage of this knowledge to defend against every cheat
using this sub-path only.

4.3 Efficiency

To illustrate the efficiency of CheatFighter, we present Figure 8
that shows the time taken by both Ghidra and CheatFighter to
analyze a given binary with respect to the different sizes of the
binary. As mentioned earlier, CheatFighter is implemented as a
post-analysis Ghidra Script, i.e., it works after Ghidra has finished
its analysis. Therefore, it can be seen that for most binaries the
time by CheatFighter is significantly lower, which is expected
given the heavy analysis Ghidra executes. However, we can also see
that the size of the binary does not affect the analysis time linearly.
That is, for binary sized from 12KB to 100KB, the time taken by
Ghidra remains the same, and this is also true for CheatFighter.
Surprisingly, when the size reaches 350KB+ the time suddenly
jumps to almost more than 6 times. We also observed that the time
taken by CheatFighter also increased with this case. Upon further
investigation it was discovered that the time is directly correlated
with the number of pointers analyzed by CheatFighter in the
binary.

4.4 Other Findings

Effect of Engine. Games built with the same engine often share
a similar implementation. This behavior can be extended to the
memory structure of the game and the cheats that target it. Table 5
shows the difference in the analysis for the engines in terms of
input (summation) and output (average). From Table 5 it is clear
that although having the same or even more cheats of UE4, the
number of binaries, size, and instructions are all greater for Unity.
Similarly, the output, i.e., memory access graphs produced by cheats
for Unity are much more complicated with taller and wider graphs,
which also take longer to analyze.

1000

1500

12 13 14 15 17 19 21 79 83 91 99 100 358
Size (Kb)

0

100

200

300

400

500

600

#P
oi

nt
er

s

0

2

4

6

8

10

12

Ti
m

e
(s

)

60

65
#Pointers
CheatFighter
Ghidra

Figure 8: Efficiency of CheatFighter

Table 5: Engine Impact on Our Analysis

Engine

Unity UE4

∑
Input

#Cheats 38.00 37.00
#Binaries 153.00 65.00
Size 5,451.00 839.00
#Ins 116,586.00 5,697.00

𝑂𝑢𝑡𝑝𝑢𝑡

Common Base libIl2cpp.so libUE4.so
Height 14.39 1.55
Branch 28 7.82
#Edges 78.09 8.55
Time(s) 61.98 25.88

5 LIMITATIONS & FUTUREWORK

While our prototype demonstrates the feasibility of a rapid auto-
mated response to widespread cheating, we do not claim that it
currently handles all conceivable program behaviors. Specifically,
while it was infrequent in our evaluation dataset, it is possible for a
cheat program to read offsets from a configuration file rather than
directly encoding them into the binary. Such cases can be handled
by modeling file system accesses, which we leave for future work.

It is also possible for a cheat program to linearly scan memory for
a specific signature as opposed to traversing objects, however this
is of limited utility to the cheater because false positive signature
matches can result in the wrong values being modified, crashing
the game. We believe this is why we did not witness any cases of
linear scanning in our dataset. Even if such cases arise, they will
be thwarted by the same randomization used to break the pointer
chains, which involves adding padding data to data structures.

We did not evaluate our prototype’s robustness to obfuscation
and circumvention, since we could not find any such real-world ex-
amples. If a programwere to obfuscate a string like “/proc/$pid/maps”,
it would have to eventually decode it into its plain text value in or-
der to make a valid system call, at which point our system’s analysis
would recover it. CheatFighter can also incorporate ideas from

28

Extracting Threat Intelligence From Cheat Binaries For Anti-Cheating RAID ’23, October 16–18, 2023, Hong Kong, China

prior work to handle obfuscation [27, 31, 32, 43, 52]. Circumvention
is difficult for the cheat program assuming that the data targeted
by the cheater (and identified by CheatFighter) is randomized
differently in each game client. Even if it is not and a cheater up-
dates their cheat program to account for the new object layouts,
since CheatFighter is fully automated and completes its analysis
in under 1 minute in most cases, repeating the randomization is
trivially inexpensive.

Finally, we focus on a prevalent and hard-to-defend type of cheat,
as discussed in §2.1. However, there are several cheats that de-
pend on the architecture, platform, or development process, which
CheatFighter does not address. For example, one way to cheat
is to use modified DLL injection for Windows-based games and
Shared Object injection for Linux-based games. Moreover, games
developed with Mono are also vulnerable to DLL modification at-
tacks. However, there are already several defenses that can detect
such injection-based tampering of the game client. In contrast, the
type of cheat we have targeted in this work operates from outside
the game by leveraging the capability of the operating system as a
whole. Such prior tampering detection techniques cannot handle
the scenario our work addresses.

6 RELATEDWORK

Anti-Cheating. There have been numerous approaches proposed
to defend against game cheating [36, 51], and these include from
code obfuscation [21, 42], process monitoring [24, 28, 41], network
traffic analysis [17, 33], server side verification [13], private set
intersection protocols [15], trusted execution environment [12, 40],
to recently trusted execution environment [12, 40] and more pro-
active vulnerability discovery [10, 56]. Compared to these works,
we explore new directions of automatically analyzing cheat binaries
to uncover how a cheat would attack the victim games, and then use
the extracted intelligence to defend against the cheating reactively.

Memory Access Chain Analysis. Uncovering how a program
variable is accessed (e.g., through pointer dereference) is extremely
valuable in security applications such as kernel rootkit detection [23]
and cross-version memory forensics [22]. In particular, FpCK [23]
developed a dynamic analysis based approach to uncover the pointer
access chain, and applied it to detect kernel function pointer cor-
ruptions. Origin [22] introduced the notation of offset-revealing
instruction and also used dynamic analysis to uncover the memory
access chain of user level programs. Lastly, SigPath [48] uses mem-
ory snapshots to build a path to the variable of interest, the same
method as used by cheat developer. Compared to these dynamic
analysis based approaches, CheatFighter explores the static bi-
nary analysis for memory access chain recovery, and demonstrated
in novel game anti-cheating applications.

Binary Analysis. CheatFighter has integrated many of the exist-
ing fundamental program analysis including backward slicing [50],
data dependence analysis [34] (or taint analysis [39, 55]), and value
set analysis [11], while developing our own API-aware, context-
sensitive, memory graph extraction algorithm from cheat binaries.
Numerous works have also been done that focus on binary analysis
(e.g., improving binary analysis techniques or applying them to

solve security problems such as malware analysis and vulnerability
discovery) [44]. In this work, we extend the binary analysis to a
new game cheat target.

7 CONCLUSION

Wehave presented CheatFighter, a new automated defense against
widespread cheating in video games that makes use of cheat intel-
ligence extracted directly from widely distributed and sold cheat
programs. Specifically, we propose to extract the pointer chains
and references from cheat binaries to guide selective data struc-
ture randomization to invalidate the cheat. We propose MAG as
the encoding representing the unified cheat intelligence scattered
in cheats to guide our defense. We have developed a prototype
of CheatFighter and tested with 86 cheats targeting 13 popular
games, and shown that CheatFighter is capable of automatically
extracting MAG and using it to subsequently harden game clients
via selective randomization.

ACKNOWLEDGMENTS

We would like to express our sincere gratitude to the anonymous
reviewers for their constructive and insightful comments, which
helped us improve the quality and clarity of this paper. We also
thank the shepherd, for their valuable guidance and support through-
out the revision process. This research was supported in part by
ARO award W911NF2110081, DARPA award N6600120C4020, and
NSA award H98230-22-1-0333,

REFERENCES

[1] [n. d.]. The business impact of video game cheaters and pirates.
https://venturebeat.com/2021/06/01/the-business-impact-of-video-game-
cheaters-and-pirates-and-how-to-fight-back-vb-live/. (Accessed on
09/25/2021).

[2] [n. d.]. Il2CppDumper. ([n. d.]). https://github.com/Perfare/Il2CppDumper.
[3] [n. d.]. Newzoo: Game market will hit $200B in 2024 | VentureBeat. https://

venturebeat.com/2021/07/04/newzoo-game-market-will-hit-200b-in-2024/. (Ac-
cessed on 09/25/2021).

[4] [n. d.]. Parallel Space Virtual Space: No Root for GameGuardian. https://www.
thedroidmod.com/2019/07/gameguardian-parallel-space.html. (Accessed on
01/25/2021).

[5] [n. d.]. San Andreas Unity Edition. ([n. d.]). https://github.com/GTA-ASM/
SanAndreasUnity.

[6] [n. d.]. Securing Unity Games with DexGuard and iXGuard. https:
//www.guardsquare.com/blog/securing-unity-games-dexguard-and-ixguard-
how-it-works. (Accessed on 09/25/2021).

[7] [n. d.]. Security-Enhanced Linux in Android. https://source.android.com/security/
selinux. (Accessed on 09/25/2021).

[8] [n. d.]. UnKnoWnCheaTs. https://www.unknowncheats.me/forum/index.php.
(Accessed on 10/01/2022).

[9] 2021. Game Guardian. https://gameguardian.net/
[10] Luigi Auriemma1 and Donato Ferrante. 2023. GAME ENGINES: A 0-DAY’S

TALE. In NoSuchCon’23. Paris, France. https://dl.packetstormsecurity.net/papers/
general/ReVuln_Game_Engines_0days_tale.pdf

[11] Gogul Balakrishnan and Thomas Reps. 2004. Analyzing Memory Accesses in x86
Executables. In Compiler Construction, Evelyn Duesterwald (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 5–23.

[12] Erick Bauman and Zhiqiang Lin. 2016. A Case for Protecting Computer Games
With SGX. In Proceedings of the 1st Workshop on System Software for Trusted
Execution (SysTEX’16). Trento, Italy.

[13] Darrell Bethea, Robert A Cochran, and Michael K Reiter. 2008. Server-side
verification of client behavior in online games. ACM Transactions on Information
and System Security (TISSEC) 14, 4 (2008), 1–27.

[14] Reinhard Blaukovitsch. 2020. YOU MIGHT BE SURPRISED BY WHAT YOUR
MOBILE GAMERS LOOK LIKE. https://blog.irdeto.com/video-gaming/you-
might-be-surprised-by-what-your-mobile-gamers-look-like/

29

https://venturebeat.com/2021/06/01/the-business-impact-of-video-game-cheaters-and-pirates-and-how-to-fight-back-vb-live/
https://venturebeat.com/2021/06/01/the-business-impact-of-video-game-cheaters-and-pirates-and-how-to-fight-back-vb-live/
https://github.com/Perfare/Il2CppDumper
https://venturebeat.com/2021/07/04/newzoo-game-market-will-hit-200b-in-2024/
https://venturebeat.com/2021/07/04/newzoo-game-market-will-hit-200b-in-2024/
https://www.thedroidmod.com/2019/07/gameguardian-parallel-space.html
https://www.thedroidmod.com/2019/07/gameguardian-parallel-space.html
https://github.com/GTA-ASM/SanAndreasUnity
https://github.com/GTA-ASM/SanAndreasUnity
https://www.guardsquare.com/blog/securing-unity-games-dexguard-and-ixguard-how-it-works
https://www.guardsquare.com/blog/securing-unity-games-dexguard-and-ixguard-how-it-works
https://www.guardsquare.com/blog/securing-unity-games-dexguard-and-ixguard-how-it-works
https://source.android.com/security/selinux
https://source.android.com/security/selinux
https://www.unknowncheats.me/forum/index.php
https://gameguardian.net/
https://dl.packetstormsecurity.net/papers/general/ReVuln_Game_Engines_0days_tale.pdf
https://dl.packetstormsecurity.net/papers/general/ReVuln_Game_Engines_0days_tale.pdf
https://blog.irdeto.com/video-gaming/you-might-be-surprised-by-what-your-mobile-gamers-look-like/
https://blog.irdeto.com/video-gaming/you-might-be-surprised-by-what-your-mobile-gamers-look-like/

RAID ’23, October 16–18, 2023, Hong Kong, China Md Sakib Anwar, Chaoshun Zuo, Carter Yagemann, and Zhiqiang Lin

[15] Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, and Dan Boneh. 2011. Open-
conflict: Preventing real time map hacks in online games. In 2011 IEEE Symposium
on Security and Privacy. IEEE, 506–520.

[16] N. Cano. 2019. Cheat Engine. https://www.cheatengine.org/
[17] Kuan-Ta Chen, Jhih-Wei Jiang, Polly Huang, Hao-Hua Chu, Chin-Laung Lei, and

Wen-Chin Chen. 2008. Identifying MMORPG bots: A traffic analysis approach.
EURASIP Journal on Advances in Signal Processing 2009 (2008), 1–22.

[18] Nicholas Cole, Sushil J Louis, and Chris Miles. 2004. Using a genetic algorithm to
tune first-person shooter bots. In Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No. 04TH8753), Vol. 1. IEEE, 139–145.

[19] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T King. 2008. Digging for
Data Structures.. In OSDI, Vol. 8. 255–266.

[20] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin.
2009. Robust signatures for kernel data structures. In Proceedings of the 16th ACM
conference on Computer and communications security. 566–577.

[21] Hui Fang, Yongdong Wu, Shuhong Wang, and Yin Huang. 2011. Multi-stage
binary code obfuscation using improved virtual machine. In International Confer-
ence on Information Security. Springer, 168–181.

[22] Qian Feng, Aravind Prakash, Minghua Wang, Curtis Carmony, and Heng Yin.
2016. Origen: Automatic extraction of offset-revealing instructions for cross-
version memory analysis. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security. 11–22.

[23] Yangchun Fu, Zhiqiang Lin, and David Brumley. 2015. Automatically deriving
pointer reference expressions from binary code for memory dump analysis. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
614–624.

[24] GameGuard 2012. http://gameguard.nprotect.com/en/index.html. Retrieved
5/4/2018.

[25] GameKiller. 2021. GameKiller. http://game-killer.com/
[26] Nelson Granados. 2018. Report: Cheating Is Becoming A Big Problem In On-

line Gaming. https://www.forbes.com/sites/nelsongranados/2018/04/30/report-
cheating-is-becoming-a-big-problem-in-online-gaming/?sh=702cc8597663

[27] Yoann Guillot and Alexandre Gazet. 2010. Automatic binary deobfuscation.
Journal in computer virology 6, 3 (2010), 261–276.

[28] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel.
2010. Accountable Virtual Machines.. In OSDI. 119–134.

[29] Munawar Hafiz and Ming Fang. 2016. Game of detections: how are security
vulnerabilities discovered in the wild? Empirical Software Engineering 21, 5
(2016), 1920–1959.

[30] KiwonHong, Youngjun Kim, Hyungoo Choi, and Jinwoo Park. 2017. SDN-assisted
slow HTTP DDoS attack defense method. IEEE Communications Letters 22, 4
(2017), 688–691.

[31] Anatoli Kalysch, Johannes Götzfried, and Tilo Müller. 2017. VMAttack: De-
obfuscating Virtualization-Based Packed Binaries. In Proceedings of the 12th
International Conference on Availability, Reliability and Security (Reggio Calabria,
Italy) (ARES ’17). Association for Computing Machinery, New York, NY, USA,
Article 2, 10 pages. https://doi.org/10.1145/3098954.3098995

[32] Zeliang Kan, Haoyu Wang, Lei Wu, Yao Guo, and Daniel Xiapu Luo. 2019.
Automated deobfuscation of Android native binary code. arXiv preprint
arXiv:1907.06828 (2019).

[33] Ah Reum Kang, Jiyoung Woo, Juyong Park, and Huy Kang Kim. 2013. Online
game bot detection based on party-play log analysis. Computers & Mathematics
with Applications 65, 9 (2013), 1384–1395.

[34] Uday Khedker, Amitabha Sanyal, and Bageshri Sathe. 2017. Data flow analysis:
theory and practice. CRC Press.

[35] Junbaek Ki, Jung Hee Cheon, Jeong-Uk Kang, and Dogyun Kim. 2004. Taxonomy
of online game security. The Electronic Library (2004).

[36] Samuli Johannes Lehtonen et al. 2020. Comparative Study of Anti-cheat Methods
in Video Games. (2020).

[37] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
2011. SigGraph: Brute Force Scanning of Kernel Data Structure Instances Using
Graph-based Signatures.. In Ndss.

[38] Microsoft and Contributors. 2023. Roslyn: The .NET Compiler Platform (”Roslyn“)
provides open-source C# and Visual Basic compilers with rich code analysis APIs.
https://github.com/dotnet/roslyn Accessed: 2023-07-03.

[39] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and SignatureGeneration of Exploits on Commodity
Software.. In NDSS, Vol. 5. Citeseer, 3–4.

[40] Seonghyun Park, Adil Ahmad, and Byoungyoung Lee. 2020. BlackMirror: Pre-
venting Wallhacks in 3D Online FPS Games. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 987–1000.

[41] Punkbuster 2018. http://www.evenbalance.com/. Retrieved 5/4/2018.
[42] Rolf Rolles. 2009. Unpacking Virtualization Obfuscators. In Proceedings of the

3rd USENIX Conference on Offensive Technologies (Montreal, Canada) (WOOT’09).
USENIX Association, USA, 1.

[43] Hassen Saıdi, Phillip Porras, and Vinod Yegneswaran. 2010. Experiences in
malware binary deobfuscation. Virus Bulletin (2010).

[44] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138–157.

[45] Deris Stiawan, Mohammad Yazid Bin Idris, Abdul Hanan Abdullah, Mohammed
AlQurashi, and Rahmat Budiarto. 2016. Penetration Testing and Mitigation of
Vulnerabilities Windows Server. Int. J. Netw. Secur. 18, 3 (2016), 501–513.

[46] I. Melih Tas, Basak Gencer Unsalver, and Selcuk Baktir. 2020. A Novel SIP
Based Distributed Reflection Denial-of-Service Attack and an Effective Defense
Mechanism. IEEE Access 8 (2020), 112574–112584. https://doi.org/10.1109/
ACCESS.2020.3001688

[47] Ruck Thawonmas, Yoshitaka Kashifuji, and Kuan-Ta Chen. 2008. Detection of
MMORPG bots based on behavior analysis. In Proceedings of the 2008 International
Conference on Advances in Computer Entertainment Technology. 91–94.

[48] David Urbina, Yufei Gu, Juan Caballero, and Zhiqiang Lin. 2014. SigPath: A
MemoryGraph BasedApproach for ProgramData Introspection andModification.
In Computer Security - ESORICS 2014, Mirosław Kutyłowski and Jaideep Vaidya
(Eds.). Springer International Publishing, Cham, 237–256.

[49] Steven Daniel Webb and Sieteng Soh. 2007. Cheating in Networked Com-
puter Games: A Review. In Proceedings of the 2nd International Conference on
Digital Interactive Media in Entertainment and Arts (Perth, Australia) (DIMEA
’07). Association for Computing Machinery, New York, NY, USA, 105–112.
https://doi.org/10.1145/1306813.1306839

[50] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

[51] Jiyoung Woo and Huy Kang Kim. 2012. Survey and Research Direction on Online
Game Security. In Proceedings of the Workshop at SIGGRAPH Asia (Singapore,
Singapore) (WASA ’12). Association for Computing Machinery, New York, NY,
USA, 19–25. https://doi.org/10.1145/2425296.2425300

[52] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A
Generic Approach to Automatic Deobfuscation of Executable Code. In 2015 IEEE
Symposium on Security and Privacy. 674–691. https://doi.org/10.1109/SP.2015.47

[53] Jeff Yan and Brian Randell. 2005. A Systematic Classification Of Cheating In
Online Games. In Proceedings of 4th ACM SIGCOMM workshop on Network and
system support for games. ACM, 1–9.

[54] Jeff Yan and Brian Randell. 2005. A systematic classification of cheating in online
games. In Proceedings of 4th ACM SIGCOMM workshop on Network and system
support for games. 1–9.

[55] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
2007. Panorama: capturing system-wide information flow for malware detec-
tion and analysis. In Proceedings of the 14th ACM conference on Computer and
communications security. 116–127.

[56] Chaoshun Zuo and Zhiqiang Lin. 2022. Playing Without Paying: Detecting
Vulnerable Payment Verification in Native Binaries of Mobile Games. In 31th
USENIX Security Symposium (USENIX Security 22).

30

https://www.cheatengine.org/
http://gameguard.nprotect.com/en/index.html
http://game-killer.com/
https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-big-problem-in-online-gaming/?sh=702cc8597663
https://www.forbes.com/sites/nelsongranados/2018/04/30/report-cheating-is-becoming-a-big-problem-in-online-gaming/?sh=702cc8597663
https://doi.org/10.1145/3098954.3098995
https://github.com/dotnet/roslyn
http://www.evenbalance.com/
https://doi.org/10.1109/ACCESS.2020.3001688
https://doi.org/10.1109/ACCESS.2020.3001688
https://doi.org/10.1145/1306813.1306839
https://doi.org/10.1145/2425296.2425300
https://doi.org/10.1109/SP.2015.47

Extracting Threat Intelligence From Cheat Binaries For Anti-Cheating RAID ’23, October 16–18, 2023, Hong Kong, China

Input Forward Analysis Backward Analysis Output Memory Access

Game Cheat MD5 #Bin

∑
Size #Func #Ins #PCode #Func #Ins #PCode Height #Branch #Edges #Base Bases Read Write

Arena 5v5 ed20772d1d946397668f246635949064 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

f53dc3d3e78c72a3a1637b37d3c85d43 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

c90b7345fc08e43cc27b59355f8b1baf 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

0cdb69c9c20ff78447778210d96337da 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

078b1ecde9d4a9914bc736bd9d85445c 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

9fdfdf42070981a6dd60b694f53c5b02 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

9423af216e97630319390ecd3dc121bf 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

c0e39becdaa1a5d1667989619ab06243 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

c84136a77a7f712f7d583c4b29958bf6 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

6519935962e97fec12693f4dfaf428e1 2 24 6 74 330 6 768 2,358 6 8 25 1 [GC] ✓ ✗

7b82d33ba38aa5542d5f5f50310bd48a 1 79 3 103 501 3 558 1,393 8 16 55 3 [GC][U][IL] ✓ ✗

4d06250057e4c0d6ec30980749230495 1 79 3 103 501 3 558 1,393 8 16 55 3 [GC][U][IL] ✓ ✗

4ea326575370827b37d63ccf71b7ad08 1 79 3 103 501 3 558 1,393 8 16 55 3 [GC][U][IL] ✓ ✗

dac338cc90b680e0d271d43229605e0f 1 83 4 171 841 4 773 2,047 8 20 66 3 [GC][U][IL] ✓ ✗

e576bc6a6bb40c2121ed20b87adda03a 1 83 4 171 841 4 773 2,047 8 20 66 3 [GC][U][IL] ✓ ✗

16e88fb8be1a9d90614e9cb996f9d3ea 2 103 8 252 1,273 8 875 2,358 8 22 72 2 [GC][U] ✓ ✗

2626ffae6cd0cc30d5bf6c2cfb2b87b8 2 103 8 252 1,273 8 875 2,358 8 22 72 2 [GC][U] ✓ ✗

e7259e23e293b117be24376ebf4b8f8c 2 103 8 252 1,273 8 875 2,358 8 22 72 2 [GC][U] ✓ ✗

c2794a5edd945a9c1dc6e7c5a74ae415 4 206 16 504 2,546 16 2,316 6,260 8 22 72 2 [GC][U] ✓ ✗

f115e1590c73f651693f64fcae962302 1 100 4 297 1,539 4 888 2,332 8 26 89 2 [GC][IL] ✓ ✗

962af48bdbaa7bc666cf9deff44e982a 2 119 8 308 1,580 8 957 2,552 8 26 89 2 [GC][IL] ✓ ✗

70af7cd3fd33ca82cd2bfa12226828bf 2 112 8 308 1,581 8 957 2,552 8 26 89 2 [GC][IL] ✓ ✗

d08e521f1f14d69e3b4e1a248a32fa78 4 223 16 616 3,162 16 2,455 6,558 8 26 89 2 [GC][IL] ✓ ✗

PUBG

fcbe24be5c57eead0c9b39cafb2e6943 1 14 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

ee19ba7ba66cf7346bc98c36dddd158c 1 15 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

d822844ed6687f37e922d9327b2c065c 1 13 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

d54b8e1f404342eb1d1f521738fa0ddf 1 12 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

bb683b8528b60419fcbc4226f989d709 1 15 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

ba188f4d6970f2598e44ca64a7bc2457 1 13 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

a96353cbffa388bd1291f08b18880f09 1 15 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

9d18e486f5386ebe8e8b9166d4e75317 1 15 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

9a923b4afef43a1ba9679e5eca828965 1 14 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

845d446534477915b365bbdb11cf255e 1 15 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

6c7a3b0f884fb20d85b926862f77e2aa 1 12 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

5848bf8853b2535d462337c45fb06ca5 1 14 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

48fe5e9600685e6120745183ef9b75ad 1 13 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

43544cbd685d87fd86c5a0c81f5a3f95 1 13 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

4113aa7a6da930fc6081e4067252ab30 1 12 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

28a1623a875d9bd6b869ec4a2f85fc56 1 12 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

282e3fe905a74d9c8c1058038cdfeb95 1 12 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

261e1427c1e363f89cf6bfb21935e122 1 13 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

15278340f66803627b0aa815caf0589c 1 14 4 11 42 4 69 221 1 1 1 1 [UE4] ✓ ✗

89a0aaf71c03ebf9e078854487560075 1 13 4 11 42 4 69 220 1 1 1 2 [UE4][GC] ✓ ✗

045bada997809b5a2aed55962c7bfe20 1 13 4 11 42 4 69 220 1 1 1 2 [UE4][GC] ✓ ✗

03ce5d7e5cbd27fd8b9043b4481cfb95 1 13 4 11 42 4 69 220 1 1 1 2 [UE4][GC] ✓ ✗

eee3a703775c5e4fb70f9f44248981ad 1 14 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

e7f871fa0c8aeb32d29d3d61b7a81fee 1 14 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

e591ce32ab5a27e981081537959cdf91 1 14 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

c9a3e73022d98c22429506fbb5a5a582 1 14 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

7e95711effacd56b65f5e74888c28881 1 14 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

58739954df87f5cf13cce7b1942987b4 1 14 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

12487a0cca79077cbafc0f9bae7bbeeb 1 13 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

05f46fbcbfa3fb795b547cef31ee4d51 1 14 4 16 71 4 73 229 1 2 2 1 [UE4] ✓ ✗

4c0c315fded1dd92e6604f5c7f9d1f11 14 184 55 198 865 55 983 3,104 1 5 5 2 [UE4][TS] ✓ ✓

33453e5c99317f487bb056693677c22a 14 184 55 198 865 55 983 3,104 1 5 5 2 [UE4][TS] ✓ ✓

13215660774577750c2774559d452d7e 14 184 55 198 865 55 983 3,104 1 5 5 2 [UE4][TS] ✓ ✓

COD
6294fd69012c3b2d984798e64ae78828 1 12 4 11 42 4 69 220 1 1 1 1 [IL] ✓ ✗

f5a270e5d051cd6c56ffe321cebb27f1 1 12 4 11 42 4 69 220 1 1 1 1 [IL] ✓ ✗

4202525ebc54a901effc0e188903954e 1 12 4 11 42 4 69 220 1 1 1 1 [IL] ✓ ✗

[GC]: libGameCore, [IL]: libil2cpp, [U]: libunity, [UE4]: libUE4, [TS]: libtersafe, [NPP]: libNssPhysicsPlugin

Table 6: Detailed Result

31

	Abstract
	1 Introduction
	2 Overview
	2.1 Cheat Taxonomy
	2.2 Cheat Development
	2.3 Motivating Example
	2.4 Challenges & Insights

	3 Design
	3.1 Head Node Identification
	3.2 Children Node Discovery
	3.3 MAG Translation
	3.4 Selective Client Obfuscation
	3.5 Other Platforms

	4 Evaluation
	4.1 Experiment Setup
	4.2 Effectiveness
	4.3 Efficiency
	4.4 Other Findings

	5 Limitations & Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

